Files
object-segmentation/src/utils/create_mask_from_detection.py

104 lines
3.3 KiB
Python
Raw Normal View History

import numpy as np
from pathlib import Path
from skimage.draw import polygon
from tifffile import TiffFile
from src.database.db_manager import DatabaseManager
def read_image(image_path: Path) -> np.ndarray:
metadata = {}
with TiffFile(image_path) as tif:
image = tif.asarray()
metadata = tif.imagej_metadata
return image, metadata
def main():
polygon_vertices = np.array([[10, 10], [50, 10], [50, 50], [10, 50]])
image = np.zeros((100, 100), dtype=np.uint8)
rr, cc = polygon(polygon_vertices[:, 0], polygon_vertices[:, 1])
image[rr, cc] = 255
if __name__ == "__main__":
db = DatabaseManager()
model_name = "c17"
model_id = db.get_models(filters={"model_name": model_name})[0]["id"]
print(f"Model name {model_name}, id {model_id}")
detections = db.get_detections(filters={"model_id": model_id})
file_stems = set()
for detection in detections:
file_stems.add(detection["image_filename"].split("_")[0])
print("Files:", file_stems)
for stem in file_stems:
print(stem)
detections = db.get_detections(filters={"model_id": model_id, "i.filename": f"LIKE %{stem}%"})
annotations = []
for detection in detections:
source_path = Path(detection["metadata"]["source_path"])
image, metadata = read_image(source_path)
offset = np.array(list(map(int, metadata["tile_section"].split(","))))[::-1]
scale = np.array(list(map(int, metadata["patch_size"].split(","))))[::-1]
# tile_size = np.array(list(map(int, metadata["tile_size"].split(","))))
segmentation = np.array(detection["segmentation_mask"]) # * tile_size
# print(source_path, image, metadata, segmentation.shape)
# print(offset)
# print(scale)
# print(segmentation)
# segmentation = (segmentation + offset * tile_size) / (tile_size * scale)
segmentation = (segmentation + offset) / scale
yolo_annotation = f"{detection['metadata']['class_id']} " + " ".join(
[f"{x:.6f} {y:.6f}" for x, y in segmentation]
)
annotations.append(yolo_annotation)
# print(segmentation)
# print(yolo_annotation)
# aa
print(
" ",
detection["model_name"],
detection["image_id"],
detection["image_filename"],
source_path,
metadata["label_path"],
)
# section_i_section_j = detection["image_filename"].split("_")[1].split(".")[0]
# print(" ", section_i_section_j)
label_path = metadata["label_path"]
print(" ", label_path)
with open(label_path, "w") as f:
f.write("\n".join(annotations))
exit()
for detection in detections:
print(detection["model_name"], detection["image_id"], detection["image_filename"])
print(detections[0])
# polygon_vertices = np.array([[10, 10], [50, 10], [50, 50], [10, 50]])
# image = np.zeros((100, 100), dtype=np.uint8)
# rr, cc = polygon(polygon_vertices[:, 0], polygon_vertices[:, 1])
# image[rr, cc] = 255
# import matplotlib.pyplot as plt
# plt.imshow(image, cmap='gray')
# plt.show()