Adding image loading

This commit is contained in:
2025-12-08 16:28:58 +02:00
parent 42fb2b782d
commit 4b5d2a7c45
6 changed files with 952 additions and 10 deletions

220
docs/IMAGE_CLASS_USAGE.md Normal file
View File

@@ -0,0 +1,220 @@
# Image Class Usage Guide
The `Image` class provides a convenient way to load and work with images in the microscopy object detection application.
## Supported Formats
The Image class supports the following image formats:
- `.jpg`, `.jpeg` - JPEG images
- `.png` - PNG images
- `.tif`, `.tiff` - TIFF images (commonly used in microscopy)
- `.bmp` - Bitmap images
## Basic Usage
### Loading an Image
```python
from src.utils import Image, ImageLoadError
# Load an image from a file path
try:
img = Image("path/to/image.jpg")
print(f"Loaded image: {img.width}x{img.height} pixels")
except ImageLoadError as e:
print(f"Failed to load image: {e}")
```
### Accessing Image Properties
```python
img = Image("microscopy_image.tif")
# Basic properties
print(f"Width: {img.width} pixels")
print(f"Height: {img.height} pixels")
print(f"Channels: {img.channels}")
print(f"Format: {img.format}")
print(f"Shape: {img.shape}") # (height, width, channels)
# File information
print(f"File size: {img.size_mb:.2f} MB")
print(f"File size: {img.size_bytes} bytes")
# Image type checks
print(f"Is color: {img.is_color()}")
print(f"Is grayscale: {img.is_grayscale()}")
# String representation
print(img) # Shows summary of image properties
```
### Working with Image Data
```python
import numpy as np
img = Image("sample.png")
# Get image data as numpy array (OpenCV format, BGR)
bgr_data = img.data
print(f"Data shape: {bgr_data.shape}")
print(f"Data type: {bgr_data.dtype}")
# Get image as RGB (for display or processing)
rgb_data = img.get_rgb()
# Get grayscale version
gray_data = img.get_grayscale()
# Create a copy (for modifications)
img_copy = img.copy()
img_copy[0, 0] = [255, 255, 255] # Modify copy, original unchanged
# Resize image (returns new array, doesn't modify original)
resized = img.resize(640, 640)
```
### Using PIL Image
```python
img = Image("photo.jpg")
# Access as PIL Image (RGB format)
pil_img = img.pil_image
# Use PIL methods
pil_img.show() # Display image
pil_img.save("output.png") # Save with PIL
```
## Integration with YOLO
```python
from src.utils import Image
from ultralytics import YOLO
# Load model and image
model = YOLO("yolov8n.pt")
img = Image("microscopy/cell_01.tif")
# Run inference (YOLO accepts file paths or numpy arrays)
results = model(img.data)
# Or use the file path directly
results = model(str(img.path))
```
## Error Handling
```python
from src.utils import Image, ImageLoadError
def process_image(image_path):
try:
img = Image(image_path)
# Process the image...
return img
except ImageLoadError as e:
print(f"Cannot load image: {e}")
return None
```
## Advanced Usage
### Batch Processing
```python
from pathlib import Path
from src.utils import Image, ImageLoadError
def process_image_directory(directory):
"""Process all images in a directory."""
image_paths = Path(directory).glob("*.tif")
for path in image_paths:
try:
img = Image(path)
print(f"Processing {img.path.name}: {img.width}x{img.height}")
# Process the image...
except ImageLoadError as e:
print(f"Skipping {path}: {e}")
```
### Using with OpenCV Operations
```python
import cv2
from src.utils import Image
img = Image("input.jpg")
# Apply OpenCV operations on the data
blurred = cv2.GaussianBlur(img.data, (5, 5), 0)
edges = cv2.Canny(img.data, 100, 200)
# Note: These operations don't modify the original img.data
```
### Memory Efficient Processing
```python
from src.utils import Image
# The Image class loads data into memory
img = Image("large_image.tif")
print(f"Image size in memory: {img.data.nbytes / (1024**2):.2f} MB")
# When processing many images, consider loading one at a time
# and releasing memory by deleting the object
del img
```
## Best Practices
1. **Always use try-except** when loading images to handle errors gracefully
2. **Check image properties** before processing to ensure compatibility
3. **Use copy()** when you need to modify image data without affecting the original
4. **Path objects work too** - The class accepts both strings and Path objects
5. **Consider memory usage** when working with large images or batches
## Example: Complete Workflow
```python
from src.utils import Image, ImageLoadError
from src.utils.file_utils import get_image_files
def analyze_microscopy_images(directory):
"""Analyze all microscopy images in a directory."""
# Get all image files
image_files = get_image_files(directory, recursive=True)
results = []
for image_path in image_files:
try:
# Load image
img = Image(image_path)
# Analyze
result = {
'filename': img.path.name,
'width': img.width,
'height': img.height,
'channels': img.channels,
'format': img.format,
'size_mb': img.size_mb,
'is_color': img.is_color()
}
results.append(result)
print(f"✓ Analyzed {img.path.name}")
except ImageLoadError as e:
print(f"✗ Failed to load {image_path}: {e}")
return results
# Run analysis
results = analyze_microscopy_images("data/datasets/cells")
print(f"\nProcessed {len(results)} images")