Adding important file

This commit is contained in:
2025-12-17 00:45:56 +02:00
parent e364d06217
commit 7d83e9b9b1

View File

@@ -0,0 +1,165 @@
"""Ultralytics runtime patches for 16-bit TIFF training.
Goals:
- Use `tifffile` to decode `.tif/.tiff` reliably (OpenCV can silently drop bit-depth depending on codec).
- Preserve 16-bit data through the dataloader as `uint16` tensors.
- Fix Ultralytics trainer normalization (default divides by 255) to scale `uint16` correctly.
- Avoid uint8-forcing augmentations by recommending/setting hyp values (handled by caller).
This module is intended to be imported/called **before** instantiating/using YOLO.
"""
from __future__ import annotations
from typing import Optional
def apply_ultralytics_16bit_tiff_patches(*, force: bool = False) -> None:
"""Apply runtime monkey-patches to Ultralytics to better support 16-bit TIFFs.
This function is safe to call multiple times.
Args:
force: If True, re-apply patches even if already applied.
"""
# Import inside function to ensure patching occurs before YOLO model/dataset is created.
import os
import cv2
import numpy as np
import tifffile
import torch
from ultralytics.utils import patches as ul_patches
already_patched = getattr(ul_patches.imread, "__name__", "") == "tifffile_imread"
if already_patched and not force:
return
_original_imread = ul_patches.imread
def tifffile_imread(
filename: str, flags: int = cv2.IMREAD_COLOR
) -> Optional[np.ndarray]:
"""Replacement for [`ultralytics.utils.patches.imread()`](venv/lib/python3.12/site-packages/ultralytics/utils/patches.py:20).
- For `.tif/.tiff`, uses `tifffile.imread()` and preserves dtype (e.g. uint16).
- For other formats, falls back to Ultralytics' original implementation.
- Always returns HWC (3 dims). For grayscale, returns (H, W, 1) or (H, W, 3) depending on requested flags.
"""
ext = os.path.splitext(filename)[1].lower()
if ext in (".tif", ".tiff"):
arr = tifffile.imread(filename)
# Normalize common shapes:
# - (H, W) -> (H, W, 1)
# - (C, H, W) -> (H, W, C) (heuristic)
if arr is None:
return None
if (
arr.ndim == 3
and arr.shape[0] in (1, 3, 4)
and arr.shape[0] < arr.shape[1]
):
arr = np.transpose(arr, (1, 2, 0))
if arr.ndim == 2:
arr = arr[..., None]
# Ultralytics expects BGR ordering when `channels=3`.
# For grayscale data we replicate channels (no scaling, no quantization).
if flags != cv2.IMREAD_GRAYSCALE:
if arr.shape[2] == 1:
arr = np.repeat(arr, 3, axis=2)
elif arr.shape[2] >= 3:
arr = arr[:, :, :3]
# Ensure contiguous array for downstream OpenCV ops.
return np.ascontiguousarray(arr)
return _original_imread(filename, flags)
# Patch the canonical reference.
ul_patches.imread = tifffile_imread
# Patch common module-level imports (some Ultralytics modules do `from ... import imread`).
# Importing these modules is safe and helps ensure the patched function is used.
try:
import ultralytics.data.base as _ul_base
_ul_base.imread = tifffile_imread
except Exception:
pass
try:
import ultralytics.data.loaders as _ul_loaders
_ul_loaders.imread = tifffile_imread
except Exception:
pass
# Patch trainer normalization: default divides by 255 regardless of input dtype.
from ultralytics.models.yolo.detect import train as detect_train
_orig_preprocess_batch = detect_train.DetectionTrainer.preprocess_batch
def preprocess_batch_16bit(self, batch: dict) -> dict: # type: ignore[override]
# Start from upstream behavior to keep device placement + multiscale identical,
# but replace the 255 division with dtype-aware scaling.
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.to(self.device, non_blocking=self.device.type == "cuda")
img = batch.get("img")
if isinstance(img, torch.Tensor):
# Decide scaling denom based on dtype (avoid expensive reductions if possible).
if img.dtype == torch.uint8:
denom = 255.0
elif img.dtype == torch.uint16:
denom = 65535.0
elif img.dtype.is_floating_point:
# Assume already in 0-1 range if float.
denom = 1.0
else:
# Generic integer fallback.
try:
denom = float(torch.iinfo(img.dtype).max)
except Exception:
denom = 255.0
batch["img"] = img.float() / denom
# Multi-scale branch copied from upstream to avoid re-introducing `/255` scaling.
if getattr(self.args, "multi_scale", False):
import math
import random
import torch.nn as nn
imgs = batch["img"]
sz = (
random.randrange(
int(self.args.imgsz * 0.5), int(self.args.imgsz * 1.5 + self.stride)
)
// self.stride
* self.stride
)
sf = sz / max(imgs.shape[2:])
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride
for x in imgs.shape[2:]
]
imgs = nn.functional.interpolate(
imgs, size=ns, mode="bilinear", align_corners=False
)
batch["img"] = imgs
return batch
detect_train.DetectionTrainer.preprocess_batch = preprocess_batch_16bit
# Tag function to make it easier to detect patch state.
setattr(
detect_train.DetectionTrainer.preprocess_batch, "_ultralytics_16bit_patch", True
)