Implementing 2 stage training

This commit is contained in:
2025-12-11 12:04:08 +02:00
parent 221c80aa8c
commit c0684a9c14
5 changed files with 315 additions and 5 deletions

View File

@@ -117,8 +117,14 @@ class ResultsTab(QWidget):
self.show_bboxes_checkbox = QCheckBox("Show Bounding Boxes")
self.show_bboxes_checkbox.setChecked(True)
self.show_bboxes_checkbox.stateChanged.connect(self._toggle_bboxes)
self.show_confidence_checkbox = QCheckBox("Show Confidence")
self.show_confidence_checkbox.setChecked(False)
self.show_confidence_checkbox.stateChanged.connect(
self._apply_detection_overlays
)
toggles_layout.addWidget(self.show_masks_checkbox)
toggles_layout.addWidget(self.show_bboxes_checkbox)
toggles_layout.addWidget(self.show_confidence_checkbox)
toggles_layout.addStretch()
preview_layout.addLayout(toggles_layout)
@@ -312,7 +318,12 @@ class ResultsTab(QWidget):
det.get("y_max"),
]
if all(v is not None for v in bbox):
self.preview_canvas.draw_saved_bbox(bbox, color)
label = None
if self.show_confidence_checkbox.isChecked():
confidence = det.get("confidence")
if confidence is not None:
label = f"{confidence:.2f}"
self.preview_canvas.draw_saved_bbox(bbox, color, label=label)
def _convert_mask(self, mask_points: List[List[float]]) -> List[List[float]]:
"""Convert stored [x, y] masks to [y, x] format for the canvas."""