Updating image converter and aading simple script to visulaize segmentation
This commit is contained in:
184
tests/show_yolo_seg.py
Normal file
184
tests/show_yolo_seg.py
Normal file
@@ -0,0 +1,184 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
show_yolo_seg.py
|
||||
|
||||
Usage:
|
||||
python show_yolo_seg.py /path/to/image.jpg /path/to/labels.txt
|
||||
|
||||
Supports:
|
||||
- Segmentation polygons: "class x1 y1 x2 y2 ... xn yn"
|
||||
- YOLO bbox lines as fallback: "class x_center y_center width height"
|
||||
Coordinates can be normalized [0..1] or absolute pixels (auto-detected).
|
||||
"""
|
||||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
|
||||
def parse_label_line(line):
|
||||
parts = line.strip().split()
|
||||
if not parts:
|
||||
return None
|
||||
cls = int(float(parts[0]))
|
||||
coords = [float(x) for x in parts[1:]]
|
||||
return cls, coords
|
||||
|
||||
|
||||
def coords_are_normalized(coords):
|
||||
# If every coordinate is between 0 and 1 (inclusive-ish), assume normalized
|
||||
if not coords:
|
||||
return False
|
||||
return max(coords) <= 1.001
|
||||
|
||||
|
||||
def yolo_bbox_to_xyxy(coords, img_w, img_h):
|
||||
# coords: [xc, yc, w, h] normalized or absolute
|
||||
xc, yc, w, h = coords[:4]
|
||||
if max(coords) <= 1.001:
|
||||
xc *= img_w
|
||||
yc *= img_h
|
||||
w *= img_w
|
||||
h *= img_h
|
||||
x1 = int(round(xc - w / 2))
|
||||
y1 = int(round(yc - h / 2))
|
||||
x2 = int(round(xc + w / 2))
|
||||
y2 = int(round(yc + h / 2))
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def poly_to_pts(coords, img_w, img_h):
|
||||
# coords: [x1 y1 x2 y2 ...] either normalized or absolute
|
||||
if coords_are_normalized(coords[4:]):
|
||||
coords = [
|
||||
coords[i] * (img_w if i % 2 == 0 else img_h) for i in range(len(coords))
|
||||
]
|
||||
pts = np.array(coords, dtype=np.int32).reshape(-1, 2)
|
||||
return pts
|
||||
|
||||
|
||||
def random_color_for_class(cls):
|
||||
random.seed(cls) # deterministic per class
|
||||
return tuple(int(x) for x in np.array([random.randint(0, 255) for _ in range(3)]))
|
||||
|
||||
|
||||
def draw_annotations(img, labels, alpha=0.4, draw_bbox_for_poly=True):
|
||||
# img: BGR numpy array
|
||||
overlay = img.copy()
|
||||
h, w = img.shape[:2]
|
||||
for cls, coords in labels:
|
||||
if not coords:
|
||||
continue
|
||||
# polygon case (>=6 coordinates)
|
||||
if len(coords) >= 6:
|
||||
color = random_color_for_class(cls)
|
||||
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords[:4], w, h)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
||||
|
||||
pts = poly_to_pts(coords[4:], w, h)
|
||||
# fill on overlay
|
||||
cv2.fillPoly(overlay, [pts], color)
|
||||
# outline on base image
|
||||
cv2.polylines(img, [pts], isClosed=True, color=color, thickness=2)
|
||||
# put class text at first point
|
||||
x, y = int(pts[0, 0]), int(pts[0, 1]) - 6
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x, max(6, y)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
|
||||
# YOLO bbox case (4 coords)
|
||||
elif len(coords) == 4:
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords, w, h)
|
||||
color = random_color_for_class(cls)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x1, max(6, y1 - 4)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
else:
|
||||
# Unknown / invalid format, skip
|
||||
continue
|
||||
|
||||
# blend overlay for filled polygons
|
||||
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
|
||||
return img
|
||||
|
||||
|
||||
def load_labels_file(label_path):
|
||||
labels = []
|
||||
with open(label_path, "r") as f:
|
||||
for raw in f:
|
||||
line = raw.strip()
|
||||
if not line:
|
||||
continue
|
||||
parsed = parse_label_line(line)
|
||||
if parsed:
|
||||
labels.append(parsed)
|
||||
return labels
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Show YOLO segmentation / polygon annotations"
|
||||
)
|
||||
parser.add_argument("image", type=str, help="Path to image file")
|
||||
parser.add_argument("labels", type=str, help="Path to YOLO label file (polygons)")
|
||||
parser.add_argument(
|
||||
"--alpha", type=float, default=0.4, help="Polygon fill alpha (0..1)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-bbox", action="store_true", help="Don't draw bounding boxes for polygons"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
img_path = Path(args.image)
|
||||
lbl_path = Path(args.labels)
|
||||
|
||||
if not img_path.exists():
|
||||
print("Image not found:", img_path)
|
||||
sys.exit(1)
|
||||
if not lbl_path.exists():
|
||||
print("Label file not found:", lbl_path)
|
||||
sys.exit(1)
|
||||
|
||||
img = cv2.imread(str(img_path), cv2.IMREAD_COLOR)
|
||||
if img is None:
|
||||
print("Could not load image:", img_path)
|
||||
sys.exit(1)
|
||||
|
||||
labels = load_labels_file(str(lbl_path))
|
||||
if not labels:
|
||||
print("No labels parsed from", lbl_path)
|
||||
# continue and just show image
|
||||
out = draw_annotations(
|
||||
img.copy(), labels, alpha=args.alpha, draw_bbox_for_poly=(not args.no_bbox)
|
||||
)
|
||||
|
||||
# Convert BGR -> RGB for matplotlib display
|
||||
out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
||||
plt.figure(figsize=(10, 10 * out.shape[0] / out.shape[1]))
|
||||
plt.imshow(out_rgb)
|
||||
plt.axis("off")
|
||||
plt.title(f"{img_path.name} ({lbl_path.name})")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user