Updating image converter and aading simple script to visulaize segmentation

This commit is contained in:
2025-12-16 11:27:38 +02:00
parent 9c4c39fb39
commit dd99a0677c
2 changed files with 216 additions and 15 deletions

View File

@@ -14,8 +14,9 @@ class UT:
def __init__(self, roifile_fn: Path):
self.roifile_fn = roifile_fn
print("is file", self.roifile_fn.is_file())
self.rois = ImagejRoi.fromfile(self.roifile_fn)
self.stem = self.roifile_fn.stem.strip("-RoiSet")
self.stem = self.roifile_fn.stem.split("Roi-")[1]
self.image, self.image_props = self._load_images()
def _load_images(self):
@@ -23,12 +24,11 @@ class UT:
array sequence is CZYX
"""
print(self.roifile_fn.parent, self.stem)
fns = list(self.roifile_fn.parent.glob(f"{self.stem}*.tif*"))
fns = list(self.roifile_fn.parent.glob(f"{self.stem.lower()}*.tif*"))
stems = [fn.stem.split(self.stem)[-1] for fn in fns]
n_ch = len(set([stem.split("-ch")[-1].split("t")[0] for stem in stems]))
n_p = len(set([stem.split("-")[0] for stem in stems]))
n_t = len(set([stem.split("t")[1] for stem in stems]))
print(n_ch, n_p, n_t)
with TiffFile(fns[0]) as tif:
img = tif.asarray()
@@ -42,6 +42,7 @@ class UT:
"height": h,
"dtype": dtype,
}
print("Image props", self.image_props)
image_stack = np.zeros((n_ch, n_p, w, h), dtype=dtype)
for fn in fns:
@@ -49,7 +50,7 @@ class UT:
img = tif.asarray()
stem = fn.stem.split(self.stem)[-1]
ch = int(stem.split("-ch")[-1].split("t")[0])
p = int(stem.split("-")[0].lstrip("p"))
p = int(stem.split("-")[0].split("p")[1])
t = int(stem.split("t")[1])
print(fn.stem, "ch", ch, "p", p, "t", t)
image_stack[ch - 1, p - 1] = img
@@ -82,10 +83,21 @@ class UT:
):
"""Export rois to a file"""
with open(path / subfolder / f"{self.stem}.txt", "w") as f:
for roi in self.rois:
# TODO add image coordinates normalization
coords = ""
for x, y in roi.subpixel_coordinates:
for i, roi in enumerate(self.rois):
rc = roi.subpixel_coordinates
if rc is None:
print(
f"No coordinates: {self.roifile_fn}, element {i}, out of {len(self.rois)}"
)
continue
xmn, ymn = rc.min(axis=0)
xmx, ymx = rc.max(axis=0)
xc = (xmn + xmx) / 2
yc = (ymn + ymx) / 2
bw = xmx - xmn
bh = ymx - ymn
coords = f"{xc/self.width} {yc/self.height} {bw/self.width} {bh/self.height} "
for x, y in rc:
coords += f"{x/self.width} {y/self.height} "
f.write(f"{class_index} {coords}\n")
@@ -112,11 +124,16 @@ if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("input", type=Path)
parser.add_argument("output", type=Path)
parser.add_argument("-i", "--input", nargs="*", type=Path)
parser.add_argument("-o", "--output", type=Path)
args = parser.parse_args()
for rfn in args.input.glob("*.zip"):
for path in args.input:
print("Path:", path)
for rfn in Path(path).glob("*.zip"):
print("Roi FN:", rfn)
ut = UT(rfn)
ut.export_rois(args.output, class_index=0)
ut.export_image(args.output, plane_mode="max projection", channel=0)
print()

184
tests/show_yolo_seg.py Normal file
View File

@@ -0,0 +1,184 @@
#!/usr/bin/env python3
"""
show_yolo_seg.py
Usage:
python show_yolo_seg.py /path/to/image.jpg /path/to/labels.txt
Supports:
- Segmentation polygons: "class x1 y1 x2 y2 ... xn yn"
- YOLO bbox lines as fallback: "class x_center y_center width height"
Coordinates can be normalized [0..1] or absolute pixels (auto-detected).
"""
import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt
import argparse
from pathlib import Path
import random
def parse_label_line(line):
parts = line.strip().split()
if not parts:
return None
cls = int(float(parts[0]))
coords = [float(x) for x in parts[1:]]
return cls, coords
def coords_are_normalized(coords):
# If every coordinate is between 0 and 1 (inclusive-ish), assume normalized
if not coords:
return False
return max(coords) <= 1.001
def yolo_bbox_to_xyxy(coords, img_w, img_h):
# coords: [xc, yc, w, h] normalized or absolute
xc, yc, w, h = coords[:4]
if max(coords) <= 1.001:
xc *= img_w
yc *= img_h
w *= img_w
h *= img_h
x1 = int(round(xc - w / 2))
y1 = int(round(yc - h / 2))
x2 = int(round(xc + w / 2))
y2 = int(round(yc + h / 2))
return x1, y1, x2, y2
def poly_to_pts(coords, img_w, img_h):
# coords: [x1 y1 x2 y2 ...] either normalized or absolute
if coords_are_normalized(coords[4:]):
coords = [
coords[i] * (img_w if i % 2 == 0 else img_h) for i in range(len(coords))
]
pts = np.array(coords, dtype=np.int32).reshape(-1, 2)
return pts
def random_color_for_class(cls):
random.seed(cls) # deterministic per class
return tuple(int(x) for x in np.array([random.randint(0, 255) for _ in range(3)]))
def draw_annotations(img, labels, alpha=0.4, draw_bbox_for_poly=True):
# img: BGR numpy array
overlay = img.copy()
h, w = img.shape[:2]
for cls, coords in labels:
if not coords:
continue
# polygon case (>=6 coordinates)
if len(coords) >= 6:
color = random_color_for_class(cls)
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords[:4], w, h)
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
pts = poly_to_pts(coords[4:], w, h)
# fill on overlay
cv2.fillPoly(overlay, [pts], color)
# outline on base image
cv2.polylines(img, [pts], isClosed=True, color=color, thickness=2)
# put class text at first point
x, y = int(pts[0, 0]), int(pts[0, 1]) - 6
cv2.putText(
img,
str(cls),
(x, max(6, y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255),
2,
cv2.LINE_AA,
)
# YOLO bbox case (4 coords)
elif len(coords) == 4:
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords, w, h)
color = random_color_for_class(cls)
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
cv2.putText(
img,
str(cls),
(x1, max(6, y1 - 4)),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255),
2,
cv2.LINE_AA,
)
else:
# Unknown / invalid format, skip
continue
# blend overlay for filled polygons
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
return img
def load_labels_file(label_path):
labels = []
with open(label_path, "r") as f:
for raw in f:
line = raw.strip()
if not line:
continue
parsed = parse_label_line(line)
if parsed:
labels.append(parsed)
return labels
def main():
parser = argparse.ArgumentParser(
description="Show YOLO segmentation / polygon annotations"
)
parser.add_argument("image", type=str, help="Path to image file")
parser.add_argument("labels", type=str, help="Path to YOLO label file (polygons)")
parser.add_argument(
"--alpha", type=float, default=0.4, help="Polygon fill alpha (0..1)"
)
parser.add_argument(
"--no-bbox", action="store_true", help="Don't draw bounding boxes for polygons"
)
args = parser.parse_args()
img_path = Path(args.image)
lbl_path = Path(args.labels)
if not img_path.exists():
print("Image not found:", img_path)
sys.exit(1)
if not lbl_path.exists():
print("Label file not found:", lbl_path)
sys.exit(1)
img = cv2.imread(str(img_path), cv2.IMREAD_COLOR)
if img is None:
print("Could not load image:", img_path)
sys.exit(1)
labels = load_labels_file(str(lbl_path))
if not labels:
print("No labels parsed from", lbl_path)
# continue and just show image
out = draw_annotations(
img.copy(), labels, alpha=args.alpha, draw_bbox_for_poly=(not args.no_bbox)
)
# Convert BGR -> RGB for matplotlib display
out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(10, 10 * out.shape[0] / out.shape[1]))
plt.imshow(out_rgb)
plt.axis("off")
plt.title(f"{img_path.name} ({lbl_path.name})")
plt.show()
if __name__ == "__main__":
main()