Compare commits
34 Commits
float32int
...
506c74e53a
| Author | SHA1 | Date | |
|---|---|---|---|
| 506c74e53a | |||
| eefda5b878 | |||
| 31cb6a6c8e | |||
| 0c19ea2557 | |||
| 89e47591db | |||
| 69cde09e53 | |||
| fcbd5fb16d | |||
| ca52312925 | |||
| 0a93bf797a | |||
| d998c65665 | |||
| 510eabfa94 | |||
| 395d263900 | |||
| e98d287b8a | |||
| d25101de2d | |||
| f88beef188 | |||
| 2fd9a2acf4 | |||
| 2bcd18cc75 | |||
| 5d25378c46 | |||
| 2b0b48921e | |||
| b0c05f0225 | |||
| 97badaa390 | |||
| 8f8132ce61 | |||
| 6ae7481e25 | |||
| 061f8b3ca2 | |||
| a8e5db3135 | |||
| 268ed5175e | |||
| 5e9d3b1dc4 | |||
| 7d83e9b9b1 | |||
| e364d06217 | |||
| e5036c10cf | |||
| c7e388d9ae | |||
| 6b995e7325 | |||
| 0e0741d323 | |||
| dd99a0677c |
@@ -1,57 +0,0 @@
|
||||
database:
|
||||
path: data/detections.db
|
||||
image_repository:
|
||||
base_path: ''
|
||||
allowed_extensions:
|
||||
- .jpg
|
||||
- .jpeg
|
||||
- .png
|
||||
- .tif
|
||||
- .tiff
|
||||
- .bmp
|
||||
models:
|
||||
default_base_model: yolov8s-seg.pt
|
||||
models_directory: data/models
|
||||
base_model_choices:
|
||||
- yolov8s-seg.pt
|
||||
- yolo11s-seg.pt
|
||||
training:
|
||||
default_epochs: 100
|
||||
default_batch_size: 16
|
||||
default_imgsz: 1024
|
||||
default_patience: 50
|
||||
default_lr0: 0.01
|
||||
two_stage:
|
||||
enabled: false
|
||||
stage1:
|
||||
epochs: 20
|
||||
lr0: 0.0005
|
||||
patience: 10
|
||||
freeze: 10
|
||||
stage2:
|
||||
epochs: 150
|
||||
lr0: 0.0003
|
||||
patience: 30
|
||||
last_dataset_yaml: /home/martin/code/object_detection/data/datasets/data.yaml
|
||||
last_dataset_dir: /home/martin/code/object_detection/data/datasets
|
||||
detection:
|
||||
default_confidence: 0.25
|
||||
default_iou: 0.45
|
||||
max_batch_size: 100
|
||||
visualization:
|
||||
bbox_colors:
|
||||
organelle: '#FF6B6B'
|
||||
membrane_branch: '#4ECDC4'
|
||||
default: '#00FF00'
|
||||
bbox_thickness: 2
|
||||
font_size: 12
|
||||
export:
|
||||
formats:
|
||||
- csv
|
||||
- json
|
||||
- excel
|
||||
default_format: csv
|
||||
logging:
|
||||
level: INFO
|
||||
file: logs/app.log
|
||||
format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
@@ -82,12 +82,12 @@ include-package-data = true
|
||||
"src.database" = ["*.sql"]
|
||||
|
||||
[tool.black]
|
||||
line-length = 88
|
||||
line-length = 120
|
||||
target-version = ['py38', 'py39', 'py310', 'py311']
|
||||
include = '\.pyi?$'
|
||||
|
||||
[tool.pylint.messages_control]
|
||||
max-line-length = 88
|
||||
max-line-length = 120
|
||||
|
||||
[tool.mypy]
|
||||
python_version = "3.8"
|
||||
|
||||
@@ -60,9 +60,7 @@ class DatabaseManager:
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Check if annotations table exists
|
||||
cursor.execute(
|
||||
"SELECT name FROM sqlite_master WHERE type='table' AND name='annotations'"
|
||||
)
|
||||
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='annotations'")
|
||||
if not cursor.fetchone():
|
||||
# Table doesn't exist yet, no migration needed
|
||||
return
|
||||
@@ -242,9 +240,7 @@ class DatabaseManager:
|
||||
return cursor.lastrowid
|
||||
except sqlite3.IntegrityError:
|
||||
# Image already exists, return its ID
|
||||
cursor.execute(
|
||||
"SELECT id FROM images WHERE relative_path = ?", (relative_path,)
|
||||
)
|
||||
cursor.execute("SELECT id FROM images WHERE relative_path = ?", (relative_path,))
|
||||
row = cursor.fetchone()
|
||||
return row["id"] if row else None
|
||||
finally:
|
||||
@@ -255,17 +251,13 @@ class DatabaseManager:
|
||||
conn = self.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"SELECT * FROM images WHERE relative_path = ?", (relative_path,)
|
||||
)
|
||||
cursor.execute("SELECT * FROM images WHERE relative_path = ?", (relative_path,))
|
||||
row = cursor.fetchone()
|
||||
return dict(row) if row else None
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def get_or_create_image(
|
||||
self, relative_path: str, filename: str, width: int, height: int
|
||||
) -> int:
|
||||
def get_or_create_image(self, relative_path: str, filename: str, width: int, height: int) -> int:
|
||||
"""Get existing image or create new one."""
|
||||
existing = self.get_image_by_path(relative_path)
|
||||
if existing:
|
||||
@@ -355,16 +347,8 @@ class DatabaseManager:
|
||||
bbox[2],
|
||||
bbox[3],
|
||||
det["confidence"],
|
||||
(
|
||||
json.dumps(det.get("segmentation_mask"))
|
||||
if det.get("segmentation_mask")
|
||||
else None
|
||||
),
|
||||
(
|
||||
json.dumps(det.get("metadata"))
|
||||
if det.get("metadata")
|
||||
else None
|
||||
),
|
||||
(json.dumps(det.get("segmentation_mask")) if det.get("segmentation_mask") else None),
|
||||
(json.dumps(det.get("metadata")) if det.get("metadata") else None),
|
||||
),
|
||||
)
|
||||
conn.commit()
|
||||
@@ -409,12 +393,13 @@ class DatabaseManager:
|
||||
if filters:
|
||||
conditions = []
|
||||
for key, value in filters.items():
|
||||
if (
|
||||
key.startswith("d.")
|
||||
or key.startswith("i.")
|
||||
or key.startswith("m.")
|
||||
):
|
||||
if key.startswith("d.") or key.startswith("i.") or key.startswith("m."):
|
||||
if "like" in value.lower():
|
||||
conditions.append(f"{key} LIKE ?")
|
||||
params.append(value.split(" ")[1])
|
||||
else:
|
||||
conditions.append(f"{key} = ?")
|
||||
params.append(value)
|
||||
else:
|
||||
conditions.append(f"d.{key} = ?")
|
||||
params.append(value)
|
||||
@@ -442,18 +427,14 @@ class DatabaseManager:
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def get_detections_for_image(
|
||||
self, image_id: int, model_id: Optional[int] = None
|
||||
) -> List[Dict]:
|
||||
def get_detections_for_image(self, image_id: int, model_id: Optional[int] = None) -> List[Dict]:
|
||||
"""Get all detections for a specific image."""
|
||||
filters = {"image_id": image_id}
|
||||
if model_id:
|
||||
filters["model_id"] = model_id
|
||||
return self.get_detections(filters)
|
||||
|
||||
def delete_detections_for_image(
|
||||
self, image_id: int, model_id: Optional[int] = None
|
||||
) -> int:
|
||||
def delete_detections_for_image(self, image_id: int, model_id: Optional[int] = None) -> int:
|
||||
"""Delete detections tied to a specific image and optional model."""
|
||||
conn = self.get_connection()
|
||||
try:
|
||||
@@ -524,9 +505,7 @@ class DatabaseManager:
|
||||
""",
|
||||
params,
|
||||
)
|
||||
class_counts = {
|
||||
row["class_name"]: row["count"] for row in cursor.fetchall()
|
||||
}
|
||||
class_counts = {row["class_name"]: row["count"] for row in cursor.fetchall()}
|
||||
|
||||
# Average confidence
|
||||
cursor.execute(
|
||||
@@ -583,9 +562,7 @@ class DatabaseManager:
|
||||
|
||||
# ==================== Export Operations ====================
|
||||
|
||||
def export_detections_to_csv(
|
||||
self, output_path: str, filters: Optional[Dict] = None
|
||||
) -> bool:
|
||||
def export_detections_to_csv(self, output_path: str, filters: Optional[Dict] = None) -> bool:
|
||||
"""Export detections to CSV file."""
|
||||
try:
|
||||
detections = self.get_detections(filters)
|
||||
@@ -614,9 +591,7 @@ class DatabaseManager:
|
||||
for det in detections:
|
||||
row = {k: det[k] for k in fieldnames if k in det}
|
||||
# Convert segmentation mask list to JSON string for CSV
|
||||
if row.get("segmentation_mask") and isinstance(
|
||||
row["segmentation_mask"], list
|
||||
):
|
||||
if row.get("segmentation_mask") and isinstance(row["segmentation_mask"], list):
|
||||
row["segmentation_mask"] = json.dumps(row["segmentation_mask"])
|
||||
writer.writerow(row)
|
||||
|
||||
@@ -625,9 +600,7 @@ class DatabaseManager:
|
||||
print(f"Error exporting to CSV: {e}")
|
||||
return False
|
||||
|
||||
def export_detections_to_json(
|
||||
self, output_path: str, filters: Optional[Dict] = None
|
||||
) -> bool:
|
||||
def export_detections_to_json(self, output_path: str, filters: Optional[Dict] = None) -> bool:
|
||||
"""Export detections to JSON file."""
|
||||
try:
|
||||
detections = self.get_detections(filters)
|
||||
@@ -785,17 +758,13 @@ class DatabaseManager:
|
||||
conn = self.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"SELECT * FROM object_classes WHERE class_name = ?", (class_name,)
|
||||
)
|
||||
cursor.execute("SELECT * FROM object_classes WHERE class_name = ?", (class_name,))
|
||||
row = cursor.fetchone()
|
||||
return dict(row) if row else None
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def add_object_class(
|
||||
self, class_name: str, color: str, description: Optional[str] = None
|
||||
) -> int:
|
||||
def add_object_class(self, class_name: str, color: str, description: Optional[str] = None) -> int:
|
||||
"""
|
||||
Add a new object class.
|
||||
|
||||
@@ -928,8 +897,7 @@ class DatabaseManager:
|
||||
if not split_map[required]:
|
||||
raise ValueError(
|
||||
"Unable to determine %s image directory under %s. Provide it "
|
||||
"explicitly via the 'splits' argument."
|
||||
% (required, dataset_root_path)
|
||||
"explicitly via the 'splits' argument." % (required, dataset_root_path)
|
||||
)
|
||||
|
||||
yaml_splits: Dict[str, str] = {}
|
||||
@@ -955,11 +923,7 @@ class DatabaseManager:
|
||||
if yaml_splits.get("test"):
|
||||
payload["test"] = yaml_splits["test"]
|
||||
|
||||
output_path_obj = (
|
||||
Path(output_path).expanduser()
|
||||
if output_path
|
||||
else dataset_root_path / "data.yaml"
|
||||
)
|
||||
output_path_obj = Path(output_path).expanduser() if output_path else dataset_root_path / "data.yaml"
|
||||
output_path_obj.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with open(output_path_obj, "w", encoding="utf-8") as handle:
|
||||
@@ -1019,15 +983,9 @@ class DatabaseManager:
|
||||
for split_name, options in patterns.items():
|
||||
for relative in options:
|
||||
candidate = (dataset_root / relative).resolve()
|
||||
if (
|
||||
candidate.exists()
|
||||
and candidate.is_dir()
|
||||
and self._directory_has_images(candidate)
|
||||
):
|
||||
if candidate.exists() and candidate.is_dir() and self._directory_has_images(candidate):
|
||||
try:
|
||||
inferred[split_name] = candidate.relative_to(
|
||||
dataset_root
|
||||
).as_posix()
|
||||
inferred[split_name] = candidate.relative_to(dataset_root).as_posix()
|
||||
except ValueError:
|
||||
inferred[split_name] = candidate.as_posix()
|
||||
break
|
||||
|
||||
@@ -35,9 +35,7 @@ logger = get_logger(__name__)
|
||||
class ResultsTab(QWidget):
|
||||
"""Results tab showing detection history and preview overlays."""
|
||||
|
||||
def __init__(
|
||||
self, db_manager: DatabaseManager, config_manager: ConfigManager, parent=None
|
||||
):
|
||||
def __init__(self, db_manager: DatabaseManager, config_manager: ConfigManager, parent=None):
|
||||
super().__init__(parent)
|
||||
self.db_manager = db_manager
|
||||
self.config_manager = config_manager
|
||||
@@ -71,24 +69,12 @@ class ResultsTab(QWidget):
|
||||
left_layout.addLayout(controls_layout)
|
||||
|
||||
self.results_table = QTableWidget(0, 5)
|
||||
self.results_table.setHorizontalHeaderLabels(
|
||||
["Image", "Model", "Detections", "Classes", "Last Updated"]
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
0, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
1, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
2, QHeaderView.ResizeToContents
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
3, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
4, QHeaderView.ResizeToContents
|
||||
)
|
||||
self.results_table.setHorizontalHeaderLabels(["Image", "Model", "Detections", "Classes", "Last Updated"])
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(0, QHeaderView.Stretch)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(1, QHeaderView.Stretch)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(2, QHeaderView.ResizeToContents)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(3, QHeaderView.Stretch)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(4, QHeaderView.ResizeToContents)
|
||||
self.results_table.setSelectionBehavior(QAbstractItemView.SelectRows)
|
||||
self.results_table.setSelectionMode(QAbstractItemView.SingleSelection)
|
||||
self.results_table.setEditTriggers(QAbstractItemView.NoEditTriggers)
|
||||
@@ -106,6 +92,8 @@ class ResultsTab(QWidget):
|
||||
preview_layout = QVBoxLayout()
|
||||
|
||||
self.preview_canvas = AnnotationCanvasWidget()
|
||||
# Auto-zoom so newly loaded images fill the available preview viewport.
|
||||
self.preview_canvas.set_auto_fit_to_view(True)
|
||||
self.preview_canvas.set_polyline_enabled(False)
|
||||
self.preview_canvas.set_show_bboxes(True)
|
||||
preview_layout.addWidget(self.preview_canvas)
|
||||
@@ -119,9 +107,7 @@ class ResultsTab(QWidget):
|
||||
self.show_bboxes_checkbox.stateChanged.connect(self._toggle_bboxes)
|
||||
self.show_confidence_checkbox = QCheckBox("Show Confidence")
|
||||
self.show_confidence_checkbox.setChecked(False)
|
||||
self.show_confidence_checkbox.stateChanged.connect(
|
||||
self._apply_detection_overlays
|
||||
)
|
||||
self.show_confidence_checkbox.stateChanged.connect(self._apply_detection_overlays)
|
||||
toggles_layout.addWidget(self.show_masks_checkbox)
|
||||
toggles_layout.addWidget(self.show_bboxes_checkbox)
|
||||
toggles_layout.addWidget(self.show_confidence_checkbox)
|
||||
@@ -169,8 +155,7 @@ class ResultsTab(QWidget):
|
||||
"image_id": det["image_id"],
|
||||
"model_id": det["model_id"],
|
||||
"image_path": det.get("image_path"),
|
||||
"image_filename": det.get("image_filename")
|
||||
or det.get("image_path"),
|
||||
"image_filename": det.get("image_filename") or det.get("image_path"),
|
||||
"model_name": det.get("model_name", ""),
|
||||
"model_version": det.get("model_version", ""),
|
||||
"last_detected": det.get("detected_at"),
|
||||
@@ -183,8 +168,7 @@ class ResultsTab(QWidget):
|
||||
|
||||
entry["count"] += 1
|
||||
if det.get("detected_at") and (
|
||||
not entry.get("last_detected")
|
||||
or str(det.get("detected_at")) > str(entry.get("last_detected"))
|
||||
not entry.get("last_detected") or str(det.get("detected_at")) > str(entry.get("last_detected"))
|
||||
):
|
||||
entry["last_detected"] = det.get("detected_at")
|
||||
if det.get("class_name"):
|
||||
@@ -214,9 +198,7 @@ class ResultsTab(QWidget):
|
||||
|
||||
for row, entry in enumerate(self.detection_summary):
|
||||
model_label = f"{entry['model_name']} {entry['model_version']}".strip()
|
||||
class_list = (
|
||||
", ".join(sorted(entry["classes"])) if entry["classes"] else "-"
|
||||
)
|
||||
class_list = ", ".join(sorted(entry["classes"])) if entry["classes"] else "-"
|
||||
|
||||
items = [
|
||||
QTableWidgetItem(entry.get("image_filename", "")),
|
||||
|
||||
@@ -10,6 +10,7 @@ from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import yaml
|
||||
import numpy as np
|
||||
from PySide6.QtCore import Qt, QThread, Signal
|
||||
from PySide6.QtWidgets import (
|
||||
QWidget,
|
||||
@@ -34,7 +35,7 @@ from PySide6.QtWidgets import (
|
||||
from src.database.db_manager import DatabaseManager
|
||||
from src.model.yolo_wrapper import YOLOWrapper
|
||||
from src.utils.config_manager import ConfigManager
|
||||
from src.utils.image import Image, convert_grayscale_to_rgb_preserve_range
|
||||
from src.utils.image import Image
|
||||
from src.utils.logger import get_logger
|
||||
|
||||
|
||||
@@ -91,10 +92,7 @@ class TrainingWorker(QThread):
|
||||
},
|
||||
}
|
||||
]
|
||||
computed_total = sum(
|
||||
max(0, int((stage.get("params") or {}).get("epochs", 0)))
|
||||
for stage in self.stage_plan
|
||||
)
|
||||
computed_total = sum(max(0, int((stage.get("params") or {}).get("epochs", 0))) for stage in self.stage_plan)
|
||||
self.total_epochs = total_epochs if total_epochs else computed_total or epochs
|
||||
self._stop_requested = False
|
||||
|
||||
@@ -201,9 +199,7 @@ class TrainingWorker(QThread):
|
||||
class TrainingTab(QWidget):
|
||||
"""Training tab for model training."""
|
||||
|
||||
def __init__(
|
||||
self, db_manager: DatabaseManager, config_manager: ConfigManager, parent=None
|
||||
):
|
||||
def __init__(self, db_manager: DatabaseManager, config_manager: ConfigManager, parent=None):
|
||||
super().__init__(parent)
|
||||
self.db_manager = db_manager
|
||||
self.config_manager = config_manager
|
||||
@@ -337,18 +333,14 @@ class TrainingTab(QWidget):
|
||||
self.model_version_edit = QLineEdit("v1")
|
||||
form_layout.addRow("Version:", self.model_version_edit)
|
||||
|
||||
default_base_model = self.config_manager.get(
|
||||
"models.default_base_model", "yolov8s-seg.pt"
|
||||
)
|
||||
default_base_model = self.config_manager.get("models.default_base_model", "yolov8s-seg.pt")
|
||||
base_model_choices = self.config_manager.get("models.base_model_choices", [])
|
||||
|
||||
self.base_model_combo = QComboBox()
|
||||
self.base_model_combo.addItem("Custom path…", "")
|
||||
for choice in base_model_choices:
|
||||
self.base_model_combo.addItem(choice, choice)
|
||||
self.base_model_combo.currentIndexChanged.connect(
|
||||
self._on_base_model_preset_changed
|
||||
)
|
||||
self.base_model_combo.currentIndexChanged.connect(self._on_base_model_preset_changed)
|
||||
form_layout.addRow("Base Model Preset:", self.base_model_combo)
|
||||
|
||||
base_model_layout = QHBoxLayout()
|
||||
@@ -434,12 +426,8 @@ class TrainingTab(QWidget):
|
||||
group_layout = QVBoxLayout()
|
||||
|
||||
self.two_stage_checkbox = QCheckBox("Enable staged head-only + full fine-tune")
|
||||
two_stage_defaults = (
|
||||
training_defaults.get("two_stage", {}) if training_defaults else {}
|
||||
)
|
||||
self.two_stage_checkbox.setChecked(
|
||||
bool(two_stage_defaults.get("enabled", False))
|
||||
)
|
||||
two_stage_defaults = training_defaults.get("two_stage", {}) if training_defaults else {}
|
||||
self.two_stage_checkbox.setChecked(bool(two_stage_defaults.get("enabled", False)))
|
||||
self.two_stage_checkbox.toggled.connect(self._on_two_stage_toggled)
|
||||
group_layout.addWidget(self.two_stage_checkbox)
|
||||
|
||||
@@ -501,9 +489,7 @@ class TrainingTab(QWidget):
|
||||
stage2_group.setLayout(stage2_form)
|
||||
controls_layout.addWidget(stage2_group)
|
||||
|
||||
helper_label = QLabel(
|
||||
"When enabled, staged hyperparameters override the global epochs/patience/lr."
|
||||
)
|
||||
helper_label = QLabel("When enabled, staged hyperparameters override the global epochs/patience/lr.")
|
||||
helper_label.setWordWrap(True)
|
||||
controls_layout.addWidget(helper_label)
|
||||
|
||||
@@ -548,9 +534,7 @@ class TrainingTab(QWidget):
|
||||
if normalized == preset_value:
|
||||
target_index = idx
|
||||
break
|
||||
if normalized.endswith(f"/{preset_value}") or normalized.endswith(
|
||||
f"\\{preset_value}"
|
||||
):
|
||||
if normalized.endswith(f"/{preset_value}") or normalized.endswith(f"\\{preset_value}"):
|
||||
target_index = idx
|
||||
break
|
||||
self.base_model_combo.blockSignals(True)
|
||||
@@ -638,9 +622,7 @@ class TrainingTab(QWidget):
|
||||
|
||||
def _browse_dataset(self):
|
||||
"""Open a file dialog to manually select data.yaml."""
|
||||
start_dir = self.config_manager.get(
|
||||
"training.last_dataset_dir", "data/datasets"
|
||||
)
|
||||
start_dir = self.config_manager.get("training.last_dataset_dir", "data/datasets")
|
||||
start_path = Path(start_dir).expanduser()
|
||||
if not start_path.exists():
|
||||
start_path = Path.cwd()
|
||||
@@ -676,9 +658,7 @@ class TrainingTab(QWidget):
|
||||
return
|
||||
except Exception as exc:
|
||||
logger.exception("Unexpected error while generating data.yaml")
|
||||
self._display_dataset_error(
|
||||
"Unexpected error while generating data.yaml. Check logs for details."
|
||||
)
|
||||
self._display_dataset_error("Unexpected error while generating data.yaml. Check logs for details.")
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"data.yaml Generation Failed",
|
||||
@@ -755,13 +735,9 @@ class TrainingTab(QWidget):
|
||||
self.selected_dataset = info
|
||||
|
||||
self.dataset_root_label.setText(info["root"]) # type: ignore[arg-type]
|
||||
self.train_count_label.setText(
|
||||
self._format_split_info(info["splits"].get("train"))
|
||||
)
|
||||
self.train_count_label.setText(self._format_split_info(info["splits"].get("train")))
|
||||
self.val_count_label.setText(self._format_split_info(info["splits"].get("val")))
|
||||
self.test_count_label.setText(
|
||||
self._format_split_info(info["splits"].get("test"))
|
||||
)
|
||||
self.test_count_label.setText(self._format_split_info(info["splits"].get("test")))
|
||||
self.num_classes_label.setText(str(info["num_classes"]))
|
||||
class_names = ", ".join(info["class_names"]) or "–"
|
||||
self.class_names_label.setText(class_names)
|
||||
@@ -815,18 +791,12 @@ class TrainingTab(QWidget):
|
||||
if split_path.exists():
|
||||
split_info["count"] = self._count_images(split_path)
|
||||
if split_info["count"] == 0:
|
||||
warnings.append(
|
||||
f"No images found for {split_name} split at {split_path}"
|
||||
)
|
||||
warnings.append(f"No images found for {split_name} split at {split_path}")
|
||||
else:
|
||||
warnings.append(
|
||||
f"{split_name.capitalize()} path does not exist: {split_path}"
|
||||
)
|
||||
warnings.append(f"{split_name.capitalize()} path does not exist: {split_path}")
|
||||
else:
|
||||
if split_name in ("train", "val"):
|
||||
warnings.append(
|
||||
f"{split_name.capitalize()} split missing in data.yaml"
|
||||
)
|
||||
warnings.append(f"{split_name.capitalize()} split missing in data.yaml")
|
||||
splits[split_name] = split_info
|
||||
|
||||
names_list = self._normalize_class_names(data.get("names"))
|
||||
@@ -844,9 +814,7 @@ class TrainingTab(QWidget):
|
||||
if not names_list and nc_value:
|
||||
names_list = [f"class_{idx}" for idx in range(int(nc_value))]
|
||||
elif nc_value and len(names_list) not in (0, int(nc_value)):
|
||||
warnings.append(
|
||||
f"Number of class names ({len(names_list)}) does not match nc={nc_value}"
|
||||
)
|
||||
warnings.append(f"Number of class names ({len(names_list)}) does not match nc={nc_value}")
|
||||
|
||||
dataset_name = data.get("name") or base_path.name
|
||||
|
||||
@@ -898,16 +866,12 @@ class TrainingTab(QWidget):
|
||||
|
||||
class_index_map = self._build_class_index_map(dataset_info)
|
||||
if not class_index_map:
|
||||
self._append_training_log(
|
||||
"Skipping label export: dataset classes do not match database entries."
|
||||
)
|
||||
self._append_training_log("Skipping label export: dataset classes do not match database entries.")
|
||||
return
|
||||
|
||||
dataset_root_str = dataset_info.get("root")
|
||||
dataset_yaml_path = dataset_info.get("yaml_path")
|
||||
dataset_yaml = (
|
||||
Path(dataset_yaml_path).expanduser() if dataset_yaml_path else None
|
||||
)
|
||||
dataset_yaml = Path(dataset_yaml_path).expanduser() if dataset_yaml_path else None
|
||||
dataset_root: Optional[Path]
|
||||
if dataset_root_str:
|
||||
dataset_root = Path(dataset_root_str).resolve()
|
||||
@@ -941,7 +905,9 @@ class TrainingTab(QWidget):
|
||||
if stats["registered_images"]:
|
||||
message += f" {stats['registered_images']} image(s) had database-backed annotations."
|
||||
if stats["missing_records"]:
|
||||
message += f" {stats['missing_records']} image(s) had no database entry; empty label files were written."
|
||||
message += (
|
||||
f" {stats['missing_records']} image(s) had no database entry; empty label files were written."
|
||||
)
|
||||
split_messages.append(message)
|
||||
|
||||
for msg in split_messages:
|
||||
@@ -973,9 +939,7 @@ class TrainingTab(QWidget):
|
||||
continue
|
||||
|
||||
processed_images += 1
|
||||
label_path = (labels_dir / image_file.relative_to(images_dir)).with_suffix(
|
||||
".txt"
|
||||
)
|
||||
label_path = (labels_dir / image_file.relative_to(images_dir)).with_suffix(".txt")
|
||||
label_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
found, annotation_entries = self._fetch_annotations_for_image(
|
||||
@@ -991,25 +955,23 @@ class TrainingTab(QWidget):
|
||||
for entry in annotation_entries:
|
||||
polygon = entry.get("polygon") or []
|
||||
if polygon:
|
||||
print(image_file, polygon[:4], polygon[-2:], entry.get("bbox"))
|
||||
# coords = " ".join(f"{value:.6f}" for value in entry.get("bbox"))
|
||||
# coords += " "
|
||||
coords = " ".join(f"{value:.6f}" for value in polygon)
|
||||
handle.write(f"{entry['class_idx']} {coords}\n")
|
||||
annotations_written += 1
|
||||
elif entry.get("bbox"):
|
||||
x_center, y_center, width, height = entry["bbox"]
|
||||
handle.write(
|
||||
f"{entry['class_idx']} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n"
|
||||
)
|
||||
handle.write(f"{entry['class_idx']} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")
|
||||
annotations_written += 1
|
||||
|
||||
total_annotations += annotations_written
|
||||
|
||||
cache_reset_root = labels_dir.parent
|
||||
self._invalidate_split_cache(cache_reset_root)
|
||||
|
||||
if processed_images == 0:
|
||||
self._append_training_log(
|
||||
f"[{split_name}] No images found to export labels for."
|
||||
)
|
||||
self._append_training_log(f"[{split_name}] No images found to export labels for.")
|
||||
return None
|
||||
|
||||
return {
|
||||
@@ -1135,6 +1097,10 @@ class TrainingTab(QWidget):
|
||||
xs.append(x_val)
|
||||
ys.append(y_val)
|
||||
|
||||
if any(np.abs(np.array(coords[:2]) - np.array(coords[-2:])) < 1e-5):
|
||||
print("Closing polygon")
|
||||
coords.extend(coords[:2])
|
||||
|
||||
if len(coords) < 6:
|
||||
continue
|
||||
|
||||
@@ -1147,6 +1113,11 @@ class TrainingTab(QWidget):
|
||||
+ abs((min(ys) if ys else 0.0) - y_min)
|
||||
+ abs((max(ys) if ys else 0.0) - y_max)
|
||||
)
|
||||
width = max(0.0, x_max - x_min)
|
||||
height = max(0.0, y_max - y_min)
|
||||
x_center = x_min + width / 2.0
|
||||
y_center = y_min + height / 2.0
|
||||
score = (x_center, y_center, width, height)
|
||||
|
||||
candidates.append((score, coords))
|
||||
|
||||
@@ -1164,13 +1135,10 @@ class TrainingTab(QWidget):
|
||||
return 1.0
|
||||
return value
|
||||
|
||||
def _prepare_dataset_for_training(
|
||||
self, dataset_yaml: Path, dataset_info: Optional[Dict[str, Any]] = None
|
||||
) -> Path:
|
||||
def _prepare_dataset_for_training(self, dataset_yaml: Path, dataset_info: Optional[Dict[str, Any]] = None) -> Path:
|
||||
dataset_info = dataset_info or (
|
||||
self.selected_dataset
|
||||
if self.selected_dataset
|
||||
and self.selected_dataset.get("yaml_path") == str(dataset_yaml)
|
||||
if self.selected_dataset and self.selected_dataset.get("yaml_path") == str(dataset_yaml)
|
||||
else self._parse_dataset_yaml(dataset_yaml)
|
||||
)
|
||||
|
||||
@@ -1189,14 +1157,10 @@ class TrainingTab(QWidget):
|
||||
cache_root = self._get_rgb_cache_root(dataset_yaml)
|
||||
rgb_yaml = cache_root / "data.yaml"
|
||||
if rgb_yaml.exists():
|
||||
self._append_training_log(
|
||||
f"Detected grayscale dataset; reusing RGB cache at {cache_root}"
|
||||
)
|
||||
self._append_training_log(f"Detected grayscale dataset; reusing RGB cache at {cache_root}")
|
||||
return rgb_yaml
|
||||
|
||||
self._append_training_log(
|
||||
f"Detected grayscale dataset; creating RGB cache at {cache_root}"
|
||||
)
|
||||
self._append_training_log(f"Detected grayscale dataset; creating RGB cache at {cache_root}")
|
||||
self._build_rgb_dataset(cache_root, dataset_info)
|
||||
return rgb_yaml
|
||||
|
||||
@@ -1303,6 +1267,14 @@ class TrainingTab(QWidget):
|
||||
sample_image = self._find_first_image(images_dir)
|
||||
if not sample_image:
|
||||
return False
|
||||
|
||||
# Do not force an RGB cache for TIFF datasets.
|
||||
# We handle grayscale/16-bit TIFFs via runtime Ultralytics patches that:
|
||||
# - load TIFFs with `tifffile`
|
||||
# - replicate grayscale to 3 channels without quantization
|
||||
# - normalize uint16 correctly during training
|
||||
if sample_image.suffix.lower() in {".tif", ".tiff"}:
|
||||
return False
|
||||
try:
|
||||
img = Image(sample_image)
|
||||
return img.pil_image.mode.upper() != "RGB"
|
||||
@@ -1368,7 +1340,7 @@ class TrainingTab(QWidget):
|
||||
img_obj = Image(src)
|
||||
pil_img = img_obj.pil_image
|
||||
if len(pil_img.getbands()) == 1:
|
||||
rgb_img = convert_grayscale_to_rgb_preserve_range(pil_img)
|
||||
rgb_img = img_obj.convert_grayscale_to_rgb_preserve_range()
|
||||
else:
|
||||
rgb_img = pil_img.convert("RGB")
|
||||
rgb_img.save(dst)
|
||||
@@ -1455,15 +1427,12 @@ class TrainingTab(QWidget):
|
||||
|
||||
dataset_path = Path(dataset_yaml).expanduser()
|
||||
if not dataset_path.exists():
|
||||
QMessageBox.warning(
|
||||
self, "Invalid Dataset", "Selected data.yaml file does not exist."
|
||||
)
|
||||
QMessageBox.warning(self, "Invalid Dataset", "Selected data.yaml file does not exist.")
|
||||
return
|
||||
|
||||
dataset_info = (
|
||||
self.selected_dataset
|
||||
if self.selected_dataset
|
||||
and self.selected_dataset.get("yaml_path") == str(dataset_path)
|
||||
if self.selected_dataset and self.selected_dataset.get("yaml_path") == str(dataset_path)
|
||||
else self._parse_dataset_yaml(dataset_path)
|
||||
)
|
||||
|
||||
@@ -1472,16 +1441,12 @@ class TrainingTab(QWidget):
|
||||
|
||||
dataset_to_use = self._prepare_dataset_for_training(dataset_path, dataset_info)
|
||||
if dataset_to_use != dataset_path:
|
||||
self._append_training_log(
|
||||
f"Using RGB-converted dataset at {dataset_to_use.parent}"
|
||||
)
|
||||
self._append_training_log(f"Using RGB-converted dataset at {dataset_to_use.parent}")
|
||||
|
||||
params = self._collect_training_params()
|
||||
stage_plan = self._compose_stage_plan(params)
|
||||
params["stage_plan"] = stage_plan
|
||||
total_planned_epochs = (
|
||||
self._calculate_total_stage_epochs(stage_plan) or params["epochs"]
|
||||
)
|
||||
total_planned_epochs = self._calculate_total_stage_epochs(stage_plan) or params["epochs"]
|
||||
params["total_planned_epochs"] = total_planned_epochs
|
||||
self._active_training_params = params
|
||||
self._training_cancelled = False
|
||||
@@ -1490,9 +1455,7 @@ class TrainingTab(QWidget):
|
||||
self._append_training_log("Two-stage fine-tuning schedule:")
|
||||
self._log_stage_plan(stage_plan)
|
||||
|
||||
self._append_training_log(
|
||||
f"Starting training run '{params['run_name']}' using {params['base_model']}"
|
||||
)
|
||||
self._append_training_log(f"Starting training run '{params['run_name']}' using {params['base_model']}")
|
||||
|
||||
self.training_progress_bar.setVisible(True)
|
||||
self.training_progress_bar.setMaximum(max(1, total_planned_epochs))
|
||||
@@ -1520,9 +1483,7 @@ class TrainingTab(QWidget):
|
||||
def _stop_training(self):
|
||||
if self.training_worker and self.training_worker.isRunning():
|
||||
self._training_cancelled = True
|
||||
self._append_training_log(
|
||||
"Stop requested. Waiting for the current epoch to finish..."
|
||||
)
|
||||
self._append_training_log("Stop requested. Waiting for the current epoch to finish...")
|
||||
self.training_worker.stop()
|
||||
self.stop_training_button.setEnabled(False)
|
||||
|
||||
@@ -1558,9 +1519,7 @@ class TrainingTab(QWidget):
|
||||
|
||||
if worker.isRunning():
|
||||
if not worker.wait(wait_timeout_ms):
|
||||
logger.warning(
|
||||
"Training worker did not finish within %sms", wait_timeout_ms
|
||||
)
|
||||
logger.warning("Training worker did not finish within %sms", wait_timeout_ms)
|
||||
|
||||
worker.deleteLater()
|
||||
|
||||
@@ -1577,16 +1536,12 @@ class TrainingTab(QWidget):
|
||||
self._set_training_state(False)
|
||||
self.training_progress_bar.setVisible(False)
|
||||
|
||||
def _on_training_progress(
|
||||
self, current_epoch: int, total_epochs: int, metrics: Dict[str, Any]
|
||||
):
|
||||
def _on_training_progress(self, current_epoch: int, total_epochs: int, metrics: Dict[str, Any]):
|
||||
self.training_progress_bar.setMaximum(total_epochs)
|
||||
self.training_progress_bar.setValue(current_epoch)
|
||||
parts = [f"Epoch {current_epoch}/{total_epochs}"]
|
||||
if metrics:
|
||||
metric_text = ", ".join(
|
||||
f"{key}: {value:.4f}" for key, value in metrics.items()
|
||||
)
|
||||
metric_text = ", ".join(f"{key}: {value:.4f}" for key, value in metrics.items())
|
||||
parts.append(metric_text)
|
||||
self._append_training_log(" | ".join(parts))
|
||||
|
||||
@@ -1613,9 +1568,7 @@ class TrainingTab(QWidget):
|
||||
f"Model trained but not registered: {exc}",
|
||||
)
|
||||
else:
|
||||
QMessageBox.information(
|
||||
self, "Training Complete", "Training finished successfully."
|
||||
)
|
||||
QMessageBox.information(self, "Training Complete", "Training finished successfully.")
|
||||
|
||||
def _on_training_error(self, message: str):
|
||||
self._cleanup_training_worker()
|
||||
@@ -1661,9 +1614,7 @@ class TrainingTab(QWidget):
|
||||
metrics=results.get("metrics"),
|
||||
)
|
||||
|
||||
self._append_training_log(
|
||||
f"Registered model '{params['model_name']}' (ID {model_id}) at {model_path}"
|
||||
)
|
||||
self._append_training_log(f"Registered model '{params['model_name']}' (ID {model_id}) at {model_path}")
|
||||
self._active_training_params = None
|
||||
|
||||
def _set_training_state(self, is_training: bool):
|
||||
@@ -1706,9 +1657,7 @@ class TrainingTab(QWidget):
|
||||
|
||||
def _browse_save_dir(self):
|
||||
start_path = self.save_dir_edit.text().strip() or "data/models"
|
||||
directory = QFileDialog.getExistingDirectory(
|
||||
self, "Select Save Directory", start_path
|
||||
)
|
||||
directory = QFileDialog.getExistingDirectory(self, "Select Save Directory", start_path)
|
||||
if directory:
|
||||
self.save_dir_edit.setText(directory)
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ from PySide6.QtGui import (
|
||||
QPaintEvent,
|
||||
QPolygonF,
|
||||
)
|
||||
from PySide6.QtCore import Qt, QEvent, Signal, QPoint, QPointF, QRect
|
||||
from PySide6.QtCore import Qt, QEvent, Signal, QPoint, QPointF, QRect, QTimer
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from src.utils.image import Image, ImageLoadError
|
||||
@@ -79,9 +79,7 @@ def rdp(points: List[Tuple[float, float]], epsilon: float) -> List[Tuple[float,
|
||||
return [start, end]
|
||||
|
||||
|
||||
def simplify_polyline(
|
||||
points: List[Tuple[float, float]], epsilon: float
|
||||
) -> List[Tuple[float, float]]:
|
||||
def simplify_polyline(points: List[Tuple[float, float]], epsilon: float) -> List[Tuple[float, float]]:
|
||||
"""
|
||||
Simplify a polyline with RDP while preserving closure semantics.
|
||||
|
||||
@@ -145,6 +143,10 @@ class AnnotationCanvasWidget(QWidget):
|
||||
self.zoom_step = 0.1
|
||||
self.zoom_wheel_step = 0.15
|
||||
|
||||
# Auto-fit behavior (opt-in): when enabled, newly loaded images (and resizes)
|
||||
# will scale to fill the available viewport while preserving aspect ratio.
|
||||
self._auto_fit_to_view: bool = False
|
||||
|
||||
# Drawing / interaction state
|
||||
self.is_drawing = False
|
||||
self.polyline_enabled = False
|
||||
@@ -175,6 +177,35 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
self._setup_ui()
|
||||
|
||||
def set_auto_fit_to_view(self, enabled: bool):
|
||||
"""Enable/disable automatic zoom-to-fit behavior."""
|
||||
self._auto_fit_to_view = bool(enabled)
|
||||
if self._auto_fit_to_view and self.original_pixmap is not None:
|
||||
QTimer.singleShot(0, self.fit_to_view)
|
||||
|
||||
def fit_to_view(self, padding_px: int = 6):
|
||||
"""Zoom the image so it fits the scroll area's viewport (aspect preserved)."""
|
||||
if self.original_pixmap is None:
|
||||
return
|
||||
|
||||
viewport = self.scroll_area.viewport().size()
|
||||
available_w = max(1, int(viewport.width()) - int(padding_px))
|
||||
available_h = max(1, int(viewport.height()) - int(padding_px))
|
||||
|
||||
img_w = max(1, int(self.original_pixmap.width()))
|
||||
img_h = max(1, int(self.original_pixmap.height()))
|
||||
|
||||
scale_w = available_w / img_w
|
||||
scale_h = available_h / img_h
|
||||
new_scale = min(scale_w, scale_h)
|
||||
new_scale = max(self.zoom_min, min(self.zoom_max, float(new_scale)))
|
||||
|
||||
if abs(new_scale - self.zoom_scale) < 1e-4:
|
||||
return
|
||||
|
||||
self.zoom_scale = new_scale
|
||||
self._apply_zoom()
|
||||
|
||||
def _setup_ui(self):
|
||||
"""Setup user interface."""
|
||||
layout = QVBoxLayout()
|
||||
@@ -187,9 +218,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
self.canvas_label = QLabel("No image loaded")
|
||||
self.canvas_label.setAlignment(Qt.AlignCenter)
|
||||
self.canvas_label.setStyleSheet(
|
||||
"QLabel { background-color: #2b2b2b; color: #888; }"
|
||||
)
|
||||
self.canvas_label.setStyleSheet("QLabel { background-color: #2b2b2b; color: #888; }")
|
||||
self.canvas_label.setScaledContents(False)
|
||||
self.canvas_label.setMouseTracking(True)
|
||||
|
||||
@@ -212,9 +241,18 @@ class AnnotationCanvasWidget(QWidget):
|
||||
self.zoom_scale = 1.0
|
||||
self.clear_annotations()
|
||||
self._display_image()
|
||||
logger.debug(
|
||||
f"Loaded image into annotation canvas: {image.width}x{image.height}"
|
||||
)
|
||||
|
||||
# Defer fit-to-view until the widget has a valid viewport size.
|
||||
if self._auto_fit_to_view:
|
||||
QTimer.singleShot(0, self.fit_to_view)
|
||||
|
||||
logger.debug(f"Loaded image into annotation canvas: {image.width}x{image.height}")
|
||||
|
||||
def resizeEvent(self, event):
|
||||
"""Optionally keep the image fitted when the widget is resized."""
|
||||
super().resizeEvent(event)
|
||||
if self._auto_fit_to_view and self.original_pixmap is not None:
|
||||
QTimer.singleShot(0, self.fit_to_view)
|
||||
|
||||
def clear(self):
|
||||
"""Clear the displayed image and all annotations."""
|
||||
@@ -250,12 +288,10 @@ class AnnotationCanvasWidget(QWidget):
|
||||
# Get image data in a format compatible with Qt
|
||||
if self.current_image.channels in (3, 4):
|
||||
image_data = self.current_image.get_rgb()
|
||||
height, width = image_data.shape[:2]
|
||||
else:
|
||||
image_data = self.current_image.get_grayscale()
|
||||
height, width = image_data.shape
|
||||
image_data = self.current_image.get_qt_rgb()
|
||||
|
||||
image_data = np.ascontiguousarray(image_data)
|
||||
height, width = image_data.shape[:2]
|
||||
bytes_per_line = image_data.strides[0]
|
||||
|
||||
qimage = QImage(
|
||||
@@ -263,7 +299,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
width,
|
||||
height,
|
||||
bytes_per_line,
|
||||
self.current_image.qtimage_format,
|
||||
QImage.Format_RGBX32FPx4, # self.current_image.qtimage_format,
|
||||
).copy() # Copy so Qt owns the buffer even after numpy array goes out of scope
|
||||
|
||||
self.original_pixmap = QPixmap.fromImage(qimage)
|
||||
@@ -291,22 +327,14 @@ class AnnotationCanvasWidget(QWidget):
|
||||
scaled_width,
|
||||
scaled_height,
|
||||
Qt.KeepAspectRatio,
|
||||
(
|
||||
Qt.SmoothTransformation
|
||||
if self.zoom_scale >= 1.0
|
||||
else Qt.FastTransformation
|
||||
),
|
||||
(Qt.SmoothTransformation if self.zoom_scale >= 1.0 else Qt.FastTransformation),
|
||||
)
|
||||
|
||||
scaled_annotations = self.annotation_pixmap.scaled(
|
||||
scaled_width,
|
||||
scaled_height,
|
||||
Qt.KeepAspectRatio,
|
||||
(
|
||||
Qt.SmoothTransformation
|
||||
if self.zoom_scale >= 1.0
|
||||
else Qt.FastTransformation
|
||||
),
|
||||
(Qt.SmoothTransformation if self.zoom_scale >= 1.0 else Qt.FastTransformation),
|
||||
)
|
||||
|
||||
# Composite image and annotations
|
||||
@@ -392,16 +420,11 @@ class AnnotationCanvasWidget(QWidget):
|
||||
y = (pos.y() - offset_y) / self.zoom_scale
|
||||
|
||||
# Check bounds
|
||||
if (
|
||||
0 <= x < self.original_pixmap.width()
|
||||
and 0 <= y < self.original_pixmap.height()
|
||||
):
|
||||
if 0 <= x < self.original_pixmap.width() and 0 <= y < self.original_pixmap.height():
|
||||
return (int(x), int(y))
|
||||
return None
|
||||
|
||||
def _find_polyline_at(
|
||||
self, img_x: float, img_y: float, threshold_px: float = 5.0
|
||||
) -> Optional[int]:
|
||||
def _find_polyline_at(self, img_x: float, img_y: float, threshold_px: float = 5.0) -> Optional[int]:
|
||||
"""
|
||||
Find index of polyline whose geometry is within threshold_px of (img_x, img_y).
|
||||
Returns the index in self.polylines, or None if none is close enough.
|
||||
@@ -423,9 +446,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
# Precise distance to all segments
|
||||
for (x1, y1), (x2, y2) in zip(polyline[:-1], polyline[1:]):
|
||||
d = perpendicular_distance(
|
||||
(img_x, img_y), (float(x1), float(y1)), (float(x2), float(y2))
|
||||
)
|
||||
d = perpendicular_distance((img_x, img_y), (float(x1), float(y1)), (float(x2), float(y2)))
|
||||
if d < best_dist:
|
||||
best_dist = d
|
||||
best_index = idx
|
||||
@@ -626,11 +647,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
def mouseMoveEvent(self, event: QMouseEvent):
|
||||
"""Handle mouse move events for drawing."""
|
||||
if (
|
||||
not self.is_drawing
|
||||
or not self.polyline_enabled
|
||||
or self.annotation_pixmap is None
|
||||
):
|
||||
if not self.is_drawing or not self.polyline_enabled or self.annotation_pixmap is None:
|
||||
super().mouseMoveEvent(event)
|
||||
return
|
||||
|
||||
@@ -690,15 +707,10 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
if len(simplified) >= 2:
|
||||
# Store polyline and redraw all annotations
|
||||
self._add_polyline(
|
||||
simplified, self.polyline_pen_color, self.polyline_pen_width
|
||||
)
|
||||
self._add_polyline(simplified, self.polyline_pen_color, self.polyline_pen_width)
|
||||
|
||||
# Convert to normalized coordinates for metadata + signal
|
||||
normalized_stroke = [
|
||||
self._image_to_normalized_coords(int(x), int(y))
|
||||
for (x, y) in simplified
|
||||
]
|
||||
normalized_stroke = [self._image_to_normalized_coords(int(x), int(y)) for (x, y) in simplified]
|
||||
self.all_strokes.append(
|
||||
{
|
||||
"points": normalized_stroke,
|
||||
@@ -711,8 +723,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
# Emit signal with normalized coordinates
|
||||
self.annotation_drawn.emit(normalized_stroke)
|
||||
logger.debug(
|
||||
f"Completed stroke with {len(simplified)} points "
|
||||
f"(normalized len={len(normalized_stroke)})"
|
||||
f"Completed stroke with {len(simplified)} points " f"(normalized len={len(normalized_stroke)})"
|
||||
)
|
||||
|
||||
self.current_stroke = []
|
||||
@@ -752,9 +763,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
# Store polyline as [y_norm, x_norm] to match DB convention and
|
||||
# the expectations of draw_saved_polyline().
|
||||
normalized_polyline = [
|
||||
[y / img_height, x / img_width] for (x, y) in polyline
|
||||
]
|
||||
normalized_polyline = [[y / img_height, x / img_width] for (x, y) in polyline]
|
||||
|
||||
logger.debug(
|
||||
f"Polyline {idx}: {len(polyline)} points, "
|
||||
@@ -774,7 +783,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
self,
|
||||
polyline: List[List[float]],
|
||||
color: str,
|
||||
width: int = 3,
|
||||
width: int = 1,
|
||||
annotation_id: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
@@ -812,17 +821,13 @@ class AnnotationCanvasWidget(QWidget):
|
||||
|
||||
# Store and redraw using common pipeline
|
||||
pen_color = QColor(color)
|
||||
pen_color.setAlpha(128) # Add semi-transparency
|
||||
pen_color.setAlpha(255) # Add semi-transparency
|
||||
self._add_polyline(img_coords, pen_color, width, annotation_id=annotation_id)
|
||||
|
||||
# Store in all_strokes for consistency (uses normalized coordinates)
|
||||
self.all_strokes.append(
|
||||
{"points": polyline, "color": color, "alpha": 128, "width": width}
|
||||
)
|
||||
self.all_strokes.append({"points": polyline, "color": color, "alpha": 255, "width": width})
|
||||
|
||||
logger.debug(
|
||||
f"Drew saved polyline with {len(polyline)} points in color {color}"
|
||||
)
|
||||
logger.debug(f"Drew saved polyline with {len(polyline)} points in color {color}")
|
||||
|
||||
def draw_saved_bbox(
|
||||
self,
|
||||
@@ -846,9 +851,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
return
|
||||
|
||||
if len(bbox) != 4:
|
||||
logger.warning(
|
||||
f"Invalid bounding box format: expected 4 values, got {len(bbox)}"
|
||||
)
|
||||
logger.warning(f"Invalid bounding box format: expected 4 values, got {len(bbox)}")
|
||||
return
|
||||
|
||||
# Convert normalized coordinates to image coordinates (for logging/debug)
|
||||
@@ -869,15 +872,11 @@ class AnnotationCanvasWidget(QWidget):
|
||||
# in _redraw_annotations() together with all polylines.
|
||||
pen_color = QColor(color)
|
||||
pen_color.setAlpha(128) # Add semi-transparency
|
||||
self.bboxes.append(
|
||||
[float(x_min_norm), float(y_min_norm), float(x_max_norm), float(y_max_norm)]
|
||||
)
|
||||
self.bboxes.append([float(x_min_norm), float(y_min_norm), float(x_max_norm), float(y_max_norm)])
|
||||
self.bbox_meta.append({"color": pen_color, "width": int(width), "label": label})
|
||||
|
||||
# Store in all_strokes for consistency
|
||||
self.all_strokes.append(
|
||||
{"bbox": bbox, "color": color, "alpha": 128, "width": width, "label": label}
|
||||
)
|
||||
self.all_strokes.append({"bbox": bbox, "color": color, "alpha": 128, "width": width, "label": label})
|
||||
|
||||
# Redraw overlay (polylines + all bounding boxes)
|
||||
self._redraw_annotations()
|
||||
|
||||
@@ -1,16 +1,21 @@
|
||||
"""
|
||||
YOLO model wrapper for the microscopy object detection application.
|
||||
Provides a clean interface to YOLOv8 for training, validation, and inference.
|
||||
"""YOLO model wrapper for the microscopy object detection application.
|
||||
|
||||
Notes on 16-bit TIFF support:
|
||||
- Ultralytics training defaults assume 8-bit images and normalize by dividing by 255.
|
||||
- This project can patch Ultralytics at runtime to decode TIFFs via `tifffile` and
|
||||
normalize `uint16` correctly.
|
||||
|
||||
See [`apply_ultralytics_16bit_tiff_patches()`](src/utils/ultralytics_16bit_patch.py:1).
|
||||
"""
|
||||
|
||||
from ultralytics import YOLO
|
||||
from pathlib import Path
|
||||
from typing import Optional, List, Dict, Callable, Any
|
||||
import torch
|
||||
import tempfile
|
||||
import os
|
||||
from src.utils.image import Image, convert_grayscale_to_rgb_preserve_range
|
||||
from src.utils.image import Image
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.ultralytics_16bit_patch import apply_ultralytics_16bit_tiff_patches
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -31,6 +36,9 @@ class YOLOWrapper:
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
logger.info(f"YOLOWrapper initialized with device: {self.device}")
|
||||
|
||||
# Apply Ultralytics runtime patches early (before first import/instantiation of YOLO datasets/trainers).
|
||||
apply_ultralytics_16bit_tiff_patches()
|
||||
|
||||
def load_model(self) -> bool:
|
||||
"""
|
||||
Load YOLO model from path.
|
||||
@@ -40,6 +48,9 @@ class YOLOWrapper:
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Loading YOLO model from {self.model_path}")
|
||||
# Import YOLO lazily to ensure runtime patches are applied first.
|
||||
from ultralytics import YOLO
|
||||
|
||||
self.model = YOLO(self.model_path)
|
||||
self.model.to(self.device)
|
||||
logger.info("Model loaded successfully")
|
||||
@@ -85,9 +96,17 @@ class YOLOWrapper:
|
||||
|
||||
try:
|
||||
logger.info(f"Starting training: {name}")
|
||||
logger.info(
|
||||
f"Data: {data_yaml}, Epochs: {epochs}, Batch: {batch}, ImgSz: {imgsz}"
|
||||
)
|
||||
logger.info(f"Data: {data_yaml}, Epochs: {epochs}, Batch: {batch}, ImgSz: {imgsz}")
|
||||
|
||||
# Defaults for 16-bit safety: disable augmentations that force uint8 and HSV ops that assume 0..255.
|
||||
# Users can override by passing explicit kwargs.
|
||||
kwargs.setdefault("mosaic", 0.0)
|
||||
kwargs.setdefault("mixup", 0.0)
|
||||
kwargs.setdefault("cutmix", 0.0)
|
||||
kwargs.setdefault("copy_paste", 0.0)
|
||||
kwargs.setdefault("hsv_h", 0.0)
|
||||
kwargs.setdefault("hsv_s", 0.0)
|
||||
kwargs.setdefault("hsv_v", 0.0)
|
||||
|
||||
# Train the model
|
||||
results = self.model.train(
|
||||
@@ -128,9 +147,7 @@ class YOLOWrapper:
|
||||
|
||||
try:
|
||||
logger.info(f"Starting validation on {split} split")
|
||||
results = self.model.val(
|
||||
data=data_yaml, split=split, device=self.device, **kwargs
|
||||
)
|
||||
results = self.model.val(data=data_yaml, split=split, device=self.device, **kwargs)
|
||||
|
||||
logger.info("Validation completed successfully")
|
||||
return self._format_validation_results(results)
|
||||
@@ -169,17 +186,18 @@ class YOLOWrapper:
|
||||
raise RuntimeError(f"Failed to load model from {self.model_path}")
|
||||
|
||||
prepared_source, cleanup_path = self._prepare_source(source)
|
||||
|
||||
imgsz = 1088
|
||||
try:
|
||||
logger.info(f"Running inference on {source}")
|
||||
logger.info(f"Running inference on {source} -> prepared_source {prepared_source}")
|
||||
results = self.model.predict(
|
||||
source=prepared_source,
|
||||
source=source,
|
||||
conf=conf,
|
||||
iou=iou,
|
||||
save=save,
|
||||
save_txt=save_txt,
|
||||
save_conf=save_conf,
|
||||
device=self.device,
|
||||
imgsz=imgsz,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -195,13 +213,9 @@ class YOLOWrapper:
|
||||
try:
|
||||
os.remove(cleanup_path)
|
||||
except OSError as cleanup_error:
|
||||
logger.warning(
|
||||
f"Failed to delete temporary RGB image {cleanup_path}: {cleanup_error}"
|
||||
)
|
||||
logger.warning(f"Failed to delete temporary RGB image {cleanup_path}: {cleanup_error}")
|
||||
|
||||
def export(
|
||||
self, format: str = "onnx", output_path: Optional[str] = None, **kwargs
|
||||
) -> str:
|
||||
def export(self, format: str = "onnx", output_path: Optional[str] = None, **kwargs) -> str:
|
||||
"""
|
||||
Export model to different format.
|
||||
|
||||
@@ -236,21 +250,13 @@ class YOLOWrapper:
|
||||
if source_path.is_file():
|
||||
try:
|
||||
img_obj = Image(source_path)
|
||||
pil_img = img_obj.pil_image
|
||||
if len(pil_img.getbands()) == 1:
|
||||
rgb_img = convert_grayscale_to_rgb_preserve_range(pil_img)
|
||||
else:
|
||||
rgb_img = pil_img.convert("RGB")
|
||||
|
||||
suffix = source_path.suffix or ".png"
|
||||
tmp = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
|
||||
tmp_path = tmp.name
|
||||
tmp.close()
|
||||
rgb_img.save(tmp_path)
|
||||
img_obj.save(tmp_path)
|
||||
cleanup_path = tmp_path
|
||||
logger.info(
|
||||
f"Converted image {source_path} to RGB for inference at {tmp_path}"
|
||||
)
|
||||
logger.info(f"Converted image {source_path} to RGB for inference at {tmp_path}")
|
||||
return tmp_path, cleanup_path
|
||||
except Exception as convert_error:
|
||||
logger.warning(
|
||||
@@ -263,9 +269,7 @@ class YOLOWrapper:
|
||||
"""Format training results into dictionary."""
|
||||
try:
|
||||
# Get the results dict
|
||||
results_dict = (
|
||||
results.results_dict if hasattr(results, "results_dict") else {}
|
||||
)
|
||||
results_dict = results.results_dict if hasattr(results, "results_dict") else {}
|
||||
|
||||
formatted = {
|
||||
"success": True,
|
||||
@@ -298,9 +302,7 @@ class YOLOWrapper:
|
||||
"mAP50-95": float(box_metrics.map),
|
||||
"precision": float(box_metrics.mp),
|
||||
"recall": float(box_metrics.mr),
|
||||
"fitness": (
|
||||
float(results.fitness) if hasattr(results, "fitness") else 0.0
|
||||
),
|
||||
"fitness": (float(results.fitness) if hasattr(results, "fitness") else 0.0),
|
||||
}
|
||||
|
||||
# Add per-class metrics if available
|
||||
@@ -310,11 +312,7 @@ class YOLOWrapper:
|
||||
if idx < len(box_metrics.ap):
|
||||
class_metrics[name] = {
|
||||
"ap": float(box_metrics.ap[idx]),
|
||||
"ap50": (
|
||||
float(box_metrics.ap50[idx])
|
||||
if hasattr(box_metrics, "ap50")
|
||||
else 0.0
|
||||
),
|
||||
"ap50": (float(box_metrics.ap50[idx]) if hasattr(box_metrics, "ap50") else 0.0),
|
||||
}
|
||||
formatted["class_metrics"] = class_metrics
|
||||
|
||||
@@ -347,21 +345,15 @@ class YOLOWrapper:
|
||||
"class_id": int(boxes.cls[i]),
|
||||
"class_name": result.names[int(boxes.cls[i])],
|
||||
"confidence": float(boxes.conf[i]),
|
||||
"bbox_normalized": [
|
||||
float(v) for v in xyxyn
|
||||
], # [x_min, y_min, x_max, y_max]
|
||||
"bbox_absolute": [
|
||||
float(v) for v in boxes.xyxy[i].cpu().numpy()
|
||||
], # Absolute pixels
|
||||
"bbox_normalized": [float(v) for v in xyxyn], # [x_min, y_min, x_max, y_max]
|
||||
"bbox_absolute": [float(v) for v in boxes.xyxy[i].cpu().numpy()], # Absolute pixels
|
||||
}
|
||||
|
||||
# Extract segmentation mask if available
|
||||
if has_masks:
|
||||
try:
|
||||
# Get the mask for this detection
|
||||
mask_data = result.masks.xy[
|
||||
i
|
||||
] # Polygon coordinates in absolute pixels
|
||||
mask_data = result.masks.xy[i] # Polygon coordinates in absolute pixels
|
||||
|
||||
# Convert to normalized coordinates
|
||||
if len(mask_data) > 0:
|
||||
@@ -374,9 +366,7 @@ class YOLOWrapper:
|
||||
else:
|
||||
detection["segmentation_mask"] = None
|
||||
except Exception as mask_error:
|
||||
logger.warning(
|
||||
f"Error extracting mask for detection {i}: {mask_error}"
|
||||
)
|
||||
logger.warning(f"Error extracting mask for detection {i}: {mask_error}")
|
||||
detection["segmentation_mask"] = None
|
||||
else:
|
||||
detection["segmentation_mask"] = None
|
||||
@@ -390,9 +380,7 @@ class YOLOWrapper:
|
||||
return []
|
||||
|
||||
@staticmethod
|
||||
def convert_bbox_format(
|
||||
bbox: List[float], format_from: str = "xywh", format_to: str = "xyxy"
|
||||
) -> List[float]:
|
||||
def convert_bbox_format(bbox: List[float], format_from: str = "xywh", format_to: str = "xyxy") -> List[float]:
|
||||
"""
|
||||
Convert bounding box between formats.
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ class ConfigManager:
|
||||
"models_directory": "data/models",
|
||||
"base_model_choices": [
|
||||
"yolov8s-seg.pt",
|
||||
"yolov11s-seg.pt",
|
||||
"yolo11s-seg.pt",
|
||||
],
|
||||
},
|
||||
"training": {
|
||||
@@ -225,6 +225,4 @@ class ConfigManager:
|
||||
|
||||
def get_allowed_extensions(self) -> list:
|
||||
"""Get list of allowed image file extensions."""
|
||||
return self.get(
|
||||
"image_repository.allowed_extensions", Image.SUPPORTED_EXTENSIONS
|
||||
)
|
||||
return self.get("image_repository.allowed_extensions", Image.SUPPORTED_EXTENSIONS)
|
||||
|
||||
@@ -6,16 +6,55 @@ import cv2
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple, Union
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.file_utils import validate_file_path, is_image_file
|
||||
|
||||
from PySide6.QtGui import QImage
|
||||
|
||||
from tifffile import imread, imwrite
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def get_pseudo_rgb(arr: np.ndarray, gamma: float = 0.5) -> np.ndarray:
|
||||
"""
|
||||
Convert a grayscale image to a pseudo-RGB image using a gamma correction.
|
||||
|
||||
Args:
|
||||
arr: Input grayscale image as numpy array
|
||||
|
||||
Returns:
|
||||
Pseudo-RGB image as numpy array
|
||||
"""
|
||||
if arr.ndim != 2:
|
||||
raise ValueError("Input array must be a grayscale image with shape (H, W)")
|
||||
|
||||
a1 = arr.copy().astype(np.float32)
|
||||
a1 -= np.percentile(a1, 2)
|
||||
a1[a1 < 0] = 0
|
||||
p999 = np.percentile(a1, 99.9)
|
||||
a1[a1 > p999] = p999
|
||||
a1 /= a1.max()
|
||||
|
||||
if 1:
|
||||
a2 = a1.copy()
|
||||
a2 = a2**gamma
|
||||
a2 /= a2.max()
|
||||
|
||||
a3 = a1.copy()
|
||||
p9999 = np.percentile(a3, 99.99)
|
||||
a3[a3 > p9999] = p9999
|
||||
a3 /= a3.max()
|
||||
|
||||
# return np.stack([a1, np.zeros(a1.shape), np.zeros(a1.shape)], axis=0)
|
||||
# return np.stack([a2, np.zeros(a1.shape), np.zeros(a1.shape)], axis=0)
|
||||
out = np.stack([a1, a2, a3], axis=0)
|
||||
# print(any(np.isnan(out).flatten()))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ImageLoadError(Exception):
|
||||
"""Exception raised when an image cannot be loaded."""
|
||||
|
||||
@@ -54,7 +93,6 @@ class Image:
|
||||
"""
|
||||
self.path = Path(image_path)
|
||||
self._data: Optional[np.ndarray] = None
|
||||
self._pil_image: Optional[PILImage.Image] = None
|
||||
self._width: int = 0
|
||||
self._height: int = 0
|
||||
self._channels: int = 0
|
||||
@@ -80,11 +118,14 @@ class Image:
|
||||
if not is_image_file(str(self.path), self.SUPPORTED_EXTENSIONS):
|
||||
ext = self.path.suffix.lower()
|
||||
raise ImageLoadError(
|
||||
f"Unsupported image format: {ext}. "
|
||||
f"Supported formats: {', '.join(self.SUPPORTED_EXTENSIONS)}"
|
||||
f"Unsupported image format: {ext}. " f"Supported formats: {', '.join(self.SUPPORTED_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
try:
|
||||
if self.path.suffix.lower() in [".tif", ".tiff"]:
|
||||
self._data = imread(str(self.path))
|
||||
else:
|
||||
# raise NotImplementedError("RGB is not implemented")
|
||||
# Load with OpenCV (returns BGR format)
|
||||
self._data = cv2.imread(str(self.path), cv2.IMREAD_UNCHANGED)
|
||||
|
||||
@@ -92,23 +133,19 @@ class Image:
|
||||
raise ImageLoadError(f"Failed to load image with OpenCV: {self.path}")
|
||||
|
||||
# Extract metadata
|
||||
# print(self._data.shape)
|
||||
if len(self._data.shape) == 2:
|
||||
self._height, self._width = self._data.shape[:2]
|
||||
self._channels = self._data.shape[2] if len(self._data.shape) == 3 else 1
|
||||
self._channels = 1
|
||||
else:
|
||||
self._height, self._width = self._data.shape[1:]
|
||||
self._channels = self._data.shape[0]
|
||||
# self._channels = self._data.shape[2] if len(self._data.shape) == 3 else 1
|
||||
self._format = self.path.suffix.lower().lstrip(".")
|
||||
self._size_bytes = self.path.stat().st_size
|
||||
self._dtype = self._data.dtype
|
||||
|
||||
# Load PIL version for compatibility (convert BGR to RGB)
|
||||
if self._channels == 3:
|
||||
rgb_data = cv2.cvtColor(self._data, cv2.COLOR_BGR2RGB)
|
||||
self._pil_image = PILImage.fromarray(rgb_data)
|
||||
elif self._channels == 4:
|
||||
rgba_data = cv2.cvtColor(self._data, cv2.COLOR_BGRA2RGBA)
|
||||
self._pil_image = PILImage.fromarray(rgba_data)
|
||||
else:
|
||||
# Grayscale
|
||||
self._pil_image = PILImage.fromarray(self._data)
|
||||
|
||||
if 0:
|
||||
logger.info(
|
||||
f"Successfully loaded image: {self.path.name} "
|
||||
f"({self._width}x{self._height}, {self._channels} channels, "
|
||||
@@ -131,18 +168,6 @@ class Image:
|
||||
raise ImageLoadError("Image data not available")
|
||||
return self._data
|
||||
|
||||
@property
|
||||
def pil_image(self) -> PILImage.Image:
|
||||
"""
|
||||
Get image data as PIL Image (RGB or grayscale).
|
||||
|
||||
Returns:
|
||||
PIL Image object
|
||||
"""
|
||||
if self._pil_image is None:
|
||||
raise ImageLoadError("PIL image not available")
|
||||
return self._pil_image
|
||||
|
||||
@property
|
||||
def width(self) -> int:
|
||||
"""Get image width in pixels."""
|
||||
@@ -187,6 +212,7 @@ class Image:
|
||||
@property
|
||||
def dtype(self) -> np.dtype:
|
||||
"""Get the data type of the image array."""
|
||||
|
||||
if self._dtype is None:
|
||||
raise ImageLoadError("Image dtype not available")
|
||||
return self._dtype
|
||||
@@ -206,8 +232,10 @@ class Image:
|
||||
elif self._channels == 1:
|
||||
if self._dtype == np.uint16:
|
||||
return QImage.Format_Grayscale16
|
||||
else:
|
||||
elif self._dtype == np.uint8:
|
||||
return QImage.Format_Grayscale8
|
||||
elif self._dtype == np.float32:
|
||||
return QImage.Format_BGR30
|
||||
else:
|
||||
raise ImageLoadError(f"Unsupported number of channels: {self._channels}")
|
||||
|
||||
@@ -218,12 +246,36 @@ class Image:
|
||||
Returns:
|
||||
Image data in RGB format as numpy array
|
||||
"""
|
||||
if self._channels == 3:
|
||||
return cv2.cvtColor(self._data, cv2.COLOR_BGR2RGB)
|
||||
if self.channels == 1:
|
||||
img = get_pseudo_rgb(self.data)
|
||||
self._dtype = img.dtype
|
||||
return img, True
|
||||
|
||||
elif self._channels == 3:
|
||||
return cv2.cvtColor(self._data, cv2.COLOR_BGR2RGB), False
|
||||
elif self._channels == 4:
|
||||
return cv2.cvtColor(self._data, cv2.COLOR_BGRA2RGBA)
|
||||
return cv2.cvtColor(self._data, cv2.COLOR_BGRA2RGBA), False
|
||||
|
||||
else:
|
||||
return self._data
|
||||
raise NotImplementedError
|
||||
|
||||
# else:
|
||||
# return self._data
|
||||
|
||||
def get_qt_rgb(self) -> np.ascontiguousarray:
|
||||
# we keep data as (C, H, W)
|
||||
_img, pseudo = self.get_rgb()
|
||||
|
||||
if pseudo:
|
||||
img = np.zeros((self.height, self.width, 4), dtype=np.float32)
|
||||
img[..., 0] = _img[0] # R gradient
|
||||
img[..., 1] = _img[1] # G gradient
|
||||
img[..., 2] = _img[2] # B constant
|
||||
img[..., 3] = 1.0 # A = 1.0 (opaque)
|
||||
|
||||
return np.ascontiguousarray(img)
|
||||
else:
|
||||
return np.ascontiguousarray(_img)
|
||||
|
||||
def get_grayscale(self) -> np.ndarray:
|
||||
"""
|
||||
@@ -277,11 +329,26 @@ class Image:
|
||||
"""
|
||||
return self._channels >= 3
|
||||
|
||||
def save(self, path: Union[str, Path], pseudo_rgb: bool = True) -> None:
|
||||
|
||||
if self.channels == 1:
|
||||
if pseudo_rgb:
|
||||
img = get_pseudo_rgb(self.data)
|
||||
print("Image.save", img.shape)
|
||||
else:
|
||||
img = np.repeat(self.data, 3, axis=2)
|
||||
|
||||
else:
|
||||
raise NotImplementedError("Only grayscale images are supported for now.")
|
||||
|
||||
imwrite(path, data=img)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the Image object."""
|
||||
return (
|
||||
f"Image(path='{self.path.name}', "
|
||||
f"shape=({self._width}x{self._height}x{self._channels}), "
|
||||
# Display as HxWxC to match the conventional NumPy shape semantics.
|
||||
f"shape=({self._height}x{self._width}x{self._channels}), "
|
||||
f"format={self._format}, "
|
||||
f"size={self.size_mb:.2f}MB)"
|
||||
)
|
||||
@@ -291,38 +358,13 @@ class Image:
|
||||
return self.__repr__()
|
||||
|
||||
|
||||
def convert_grayscale_to_rgb_preserve_range(
|
||||
pil_image: PILImage.Image,
|
||||
) -> PILImage.Image:
|
||||
"""Convert a single-channel PIL image to RGB while preserving dynamic range.
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
Args:
|
||||
pil_image: Single-channel PIL image (e.g., 16-bit grayscale).
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--path", type=str, required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
Returns:
|
||||
PIL Image in RGB mode with intensities normalized to 0-255.
|
||||
"""
|
||||
|
||||
if pil_image.mode == "RGB":
|
||||
return pil_image
|
||||
|
||||
grayscale = np.array(pil_image)
|
||||
if grayscale.ndim == 3:
|
||||
grayscale = grayscale[:, :, 0]
|
||||
|
||||
original_dtype = grayscale.dtype
|
||||
grayscale = grayscale.astype(np.float32)
|
||||
|
||||
if grayscale.size == 0:
|
||||
return PILImage.new("RGB", pil_image.size, color=(0, 0, 0))
|
||||
|
||||
if np.issubdtype(original_dtype, np.integer):
|
||||
denom = float(max(np.iinfo(original_dtype).max, 1))
|
||||
else:
|
||||
max_val = float(grayscale.max())
|
||||
denom = max(max_val, 1.0)
|
||||
|
||||
grayscale = np.clip(grayscale / denom, 0.0, 1.0)
|
||||
grayscale_u8 = (grayscale * 255.0).round().astype(np.uint8)
|
||||
rgb_arr = np.repeat(grayscale_u8[:, :, None], 3, axis=2)
|
||||
return PILImage.fromarray(rgb_arr, mode="RGB")
|
||||
img = Image(args.path)
|
||||
img.save(args.path + "test.tif")
|
||||
print(img)
|
||||
|
||||
@@ -12,23 +12,38 @@ class UT:
|
||||
Operetta files along with rois drawn in ImageJ
|
||||
"""
|
||||
|
||||
def __init__(self, roifile_fn: Path):
|
||||
def __init__(self, roifile_fn: Path, no_labels: bool):
|
||||
self.roifile_fn = roifile_fn
|
||||
print("is file", self.roifile_fn.is_file())
|
||||
self.rois = None
|
||||
if no_labels:
|
||||
self.rois = ImagejRoi.fromfile(self.roifile_fn)
|
||||
self.stem = self.roifile_fn.stem.strip("-RoiSet")
|
||||
print(self.roifile_fn.stem)
|
||||
print(self.roifile_fn.parent.parts[-1])
|
||||
if "Roi-" in self.roifile_fn.stem:
|
||||
self.stem = self.roifile_fn.stem.split("Roi-")[1]
|
||||
else:
|
||||
self.stem = self.roifile_fn.parent.parts[-1]
|
||||
|
||||
else:
|
||||
self.roifile_fn = roifile_fn / roifile_fn.parts[-1]
|
||||
self.stem = self.roifile_fn.stem
|
||||
|
||||
print(self.roifile_fn)
|
||||
|
||||
print(self.stem)
|
||||
self.image, self.image_props = self._load_images()
|
||||
|
||||
def _load_images(self):
|
||||
"""Loading sequence of tif files
|
||||
array sequence is CZYX
|
||||
"""
|
||||
print(self.roifile_fn.parent, self.stem)
|
||||
fns = list(self.roifile_fn.parent.glob(f"{self.stem}*.tif*"))
|
||||
print("Loading images:", self.roifile_fn.parent, self.stem)
|
||||
fns = list(self.roifile_fn.parent.glob(f"{self.stem.lower()}*.tif*"))
|
||||
stems = [fn.stem.split(self.stem)[-1] for fn in fns]
|
||||
n_ch = len(set([stem.split("-ch")[-1].split("t")[0] for stem in stems]))
|
||||
n_p = len(set([stem.split("-")[0] for stem in stems]))
|
||||
n_t = len(set([stem.split("t")[1] for stem in stems]))
|
||||
print(n_ch, n_p, n_t)
|
||||
|
||||
with TiffFile(fns[0]) as tif:
|
||||
img = tif.asarray()
|
||||
@@ -42,6 +57,7 @@ class UT:
|
||||
"height": h,
|
||||
"dtype": dtype,
|
||||
}
|
||||
print("Image props", self.image_props)
|
||||
|
||||
image_stack = np.zeros((n_ch, n_p, w, h), dtype=dtype)
|
||||
for fn in fns:
|
||||
@@ -49,7 +65,7 @@ class UT:
|
||||
img = tif.asarray()
|
||||
stem = fn.stem.split(self.stem)[-1]
|
||||
ch = int(stem.split("-ch")[-1].split("t")[0])
|
||||
p = int(stem.split("-")[0].lstrip("p"))
|
||||
p = int(stem.split("-")[0].split("p")[1])
|
||||
t = int(stem.split("t")[1])
|
||||
print(fn.stem, "ch", ch, "p", p, "t", t)
|
||||
image_stack[ch - 1, p - 1] = img
|
||||
@@ -82,10 +98,19 @@ class UT:
|
||||
):
|
||||
"""Export rois to a file"""
|
||||
with open(path / subfolder / f"{self.stem}.txt", "w") as f:
|
||||
for roi in self.rois:
|
||||
# TODO add image coordinates normalization
|
||||
coords = ""
|
||||
for x, y in roi.subpixel_coordinates:
|
||||
for i, roi in enumerate(self.rois):
|
||||
rc = roi.subpixel_coordinates
|
||||
if rc is None:
|
||||
print(f"No coordinates: {self.roifile_fn}, element {i}, out of {len(self.rois)}")
|
||||
continue
|
||||
xmn, ymn = rc.min(axis=0)
|
||||
xmx, ymx = rc.max(axis=0)
|
||||
xc = (xmn + xmx) / 2
|
||||
yc = (ymn + ymx) / 2
|
||||
bw = xmx - xmn
|
||||
bh = ymx - ymn
|
||||
coords = f"{xc/self.width} {yc/self.height} {bw/self.width} {bh/self.height} "
|
||||
for x, y in rc:
|
||||
coords += f"{x/self.width} {y/self.height} "
|
||||
f.write(f"{class_index} {coords}\n")
|
||||
|
||||
@@ -104,6 +129,7 @@ class UT:
|
||||
self.image = np.max(self.image[channel], axis=0)
|
||||
print(self.image.shape)
|
||||
|
||||
print(path / subfolder / f"{self.stem}.tif")
|
||||
with TiffWriter(path / subfolder / f"{self.stem}.tif") as tif:
|
||||
tif.write(self.image)
|
||||
|
||||
@@ -112,11 +138,31 @@ if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("input", type=Path)
|
||||
parser.add_argument("output", type=Path)
|
||||
parser.add_argument("-i", "--input", nargs="*", type=Path)
|
||||
parser.add_argument("-o", "--output", type=Path)
|
||||
parser.add_argument(
|
||||
"--no-labels",
|
||||
action="store_false",
|
||||
help="Source does not have labels, export only images",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
for rfn in args.input.glob("*.zip"):
|
||||
ut = UT(rfn)
|
||||
# print(args)
|
||||
# aa
|
||||
|
||||
for path in args.input:
|
||||
print("Path:", path)
|
||||
if not args.no_labels:
|
||||
print("No labels")
|
||||
ut = UT(path, args.no_labels)
|
||||
ut.export_image(args.output, plane_mode="max projection", channel=0)
|
||||
|
||||
else:
|
||||
for rfn in Path(path).glob("*.zip"):
|
||||
# if Path(path).suffix == ".zip":
|
||||
print("Roi FN:", rfn)
|
||||
ut = UT(rfn, args.no_labels)
|
||||
ut.export_rois(args.output, class_index=0)
|
||||
ut.export_image(args.output, plane_mode="max projection", channel=0)
|
||||
|
||||
print()
|
||||
|
||||
368
src/utils/image_splitter.py
Normal file
368
src/utils/image_splitter.py
Normal file
@@ -0,0 +1,368 @@
|
||||
import numpy as np
|
||||
|
||||
from pathlib import Path
|
||||
from tifffile import imread, imwrite
|
||||
from shapely.geometry import LineString
|
||||
from copy import deepcopy
|
||||
from scipy.ndimage import zoom
|
||||
|
||||
|
||||
# debug
|
||||
from src.utils.image import Image
|
||||
from show_yolo_seg import draw_annotations
|
||||
|
||||
import pylab as plt
|
||||
import cv2
|
||||
|
||||
|
||||
class Label:
|
||||
def __init__(self, yolo_annotation: str):
|
||||
class_id, bbox, polygon = self.parse_yolo_annotation(yolo_annotation)
|
||||
self.class_id = class_id
|
||||
self.bbox = bbox
|
||||
self.polygon = polygon
|
||||
|
||||
def parse_yolo_annotation(self, yolo_annotation: str):
|
||||
class_id, *coords = yolo_annotation.split()
|
||||
class_id = int(class_id)
|
||||
bbox = np.array(coords[:4], dtype=np.float32)
|
||||
polygon = np.array(coords[4:], dtype=np.float32).reshape(-1, 2) if len(coords) > 4 else None
|
||||
if not any(np.isclose(polygon[0], polygon[-1])):
|
||||
polygon = np.vstack([polygon, polygon[0]])
|
||||
return class_id, bbox, polygon
|
||||
|
||||
def offset_label(
|
||||
self,
|
||||
img_w,
|
||||
img_h,
|
||||
distance: float = 1.0,
|
||||
cap_style: int = 2,
|
||||
join_style: int = 2,
|
||||
):
|
||||
if self.polygon is None:
|
||||
self.bbox = np.array(
|
||||
[
|
||||
self.bbox[0] - distance if self.bbox[0] - distance > 0 else 0,
|
||||
self.bbox[1] - distance if self.bbox[1] - distance > 0 else 0,
|
||||
self.bbox[2] + distance if self.bbox[2] + distance < 1 else 1,
|
||||
self.bbox[3] + distance if self.bbox[3] + distance < 1 else 1,
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
return self.bbox
|
||||
|
||||
def coords_are_normalized(coords):
|
||||
# If every coordinate is between 0 and 1 (inclusive-ish), assume normalized
|
||||
print(coords)
|
||||
# if not coords:
|
||||
# return False
|
||||
return all(max(coords.flatten)) <= 1.001
|
||||
|
||||
def poly_to_pts(coords, img_w, img_h):
|
||||
# coords: [x1 y1 x2 y2 ...] either normalized or absolute
|
||||
# if coords_are_normalized(coords):
|
||||
coords = [coords[i] * (img_w if i % 2 == 0 else img_h) for i in range(len(coords))]
|
||||
pts = np.array(coords, dtype=np.int32).reshape(-1, 2)
|
||||
return pts
|
||||
|
||||
pts = poly_to_pts(self.polygon, img_w, img_h)
|
||||
line = LineString(pts)
|
||||
# Buffer distance in pixels
|
||||
buffered = line.buffer(distance=distance, cap_style=cap_style, join_style=join_style)
|
||||
self.polygon = np.array(buffered.exterior.coords, dtype=np.float32) / (img_w, img_h)
|
||||
xmn, ymn = self.polygon.min(axis=0)
|
||||
xmx, ymx = self.polygon.max(axis=0)
|
||||
xc = (xmn + xmx) / 2
|
||||
yc = (ymn + ymx) / 2
|
||||
bw = xmx - xmn
|
||||
bh = ymx - ymn
|
||||
self.bbox = np.array([xc, yc, bw, bh], dtype=np.float32)
|
||||
|
||||
return self.bbox, self.polygon
|
||||
|
||||
def translate(self, x, y, scale_x, scale_y):
|
||||
self.bbox[0] -= x
|
||||
self.bbox[0] *= scale_x
|
||||
self.bbox[1] -= y
|
||||
self.bbox[1] *= scale_y
|
||||
self.bbox[2] *= scale_x
|
||||
self.bbox[3] *= scale_y
|
||||
if self.polygon is not None:
|
||||
self.polygon[:, 0] -= x
|
||||
self.polygon[:, 0] *= scale_x
|
||||
self.polygon[:, 1] -= y
|
||||
self.polygon[:, 1] *= scale_y
|
||||
|
||||
def in_range(self, hrange, wrange):
|
||||
xc, yc, h, w = self.bbox
|
||||
x1 = xc - w / 2
|
||||
y1 = yc - h / 2
|
||||
x2 = xc + w / 2
|
||||
y2 = yc + h / 2
|
||||
truth_val = (
|
||||
xc >= wrange[0]
|
||||
and x1 <= wrange[1]
|
||||
and x2 >= wrange[0]
|
||||
and x2 <= wrange[1]
|
||||
and y1 >= hrange[0]
|
||||
and y1 <= hrange[1]
|
||||
and y2 >= hrange[0]
|
||||
and y2 <= hrange[1]
|
||||
)
|
||||
|
||||
print(x1, x2, wrange, y1, y2, hrange, truth_val)
|
||||
return truth_val
|
||||
|
||||
def to_string(self, bbox: list = None, polygon: list = None):
|
||||
coords = ""
|
||||
if bbox is None:
|
||||
bbox = self.bbox
|
||||
# coords += " ".join([f"{x:.6f}" for x in self.bbox])
|
||||
if polygon is None:
|
||||
polygon = self.polygon
|
||||
if self.polygon is not None:
|
||||
coords += " " + " ".join([f"{x:.6f} {y:.6f}" for x, y in self.polygon])
|
||||
return f"{self.class_id} {coords}"
|
||||
|
||||
def __str__(self):
|
||||
return f"Class: {self.class_id}, BBox: {self.bbox}, Polygon: {self.polygon}"
|
||||
|
||||
|
||||
class YoloLabelReader:
|
||||
def __init__(self, label_path: Path):
|
||||
self.label_path = label_path
|
||||
self.labels = self._read_labels()
|
||||
|
||||
def _read_labels(self):
|
||||
with open(self.label_path, "r") as f:
|
||||
labels = [Label(line) for line in f.readlines()]
|
||||
|
||||
return labels
|
||||
|
||||
def get_labels(self, hrange, wrange):
|
||||
"""hrange and wrange are tuples of (start, end) normalized to [0, 1]"""
|
||||
labels = []
|
||||
# print(hrange, wrange)
|
||||
for lbl in self.labels:
|
||||
# print(lbl)
|
||||
if lbl.in_range(hrange, wrange):
|
||||
labels.append(lbl)
|
||||
return labels if len(labels) > 0 else None
|
||||
|
||||
def __get_item__(self, index):
|
||||
return self.labels[index]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.labels)
|
||||
|
||||
|
||||
class ImageSplitter:
|
||||
def __init__(self, image_path: Path, label_path: Path):
|
||||
self.image = imread(image_path)
|
||||
self.image_path = image_path
|
||||
self.label_path = label_path
|
||||
if not label_path.exists():
|
||||
print(f"Label file {label_path} not found")
|
||||
self.labels = None
|
||||
else:
|
||||
self.labels = YoloLabelReader(label_path)
|
||||
|
||||
def split_into_tiles(self, patch_size: tuple = (2, 2)):
|
||||
"""Split image into patches of size patch_size"""
|
||||
hstep, wstep = (
|
||||
self.image.shape[0] // patch_size[0],
|
||||
self.image.shape[1] // patch_size[1],
|
||||
)
|
||||
h, w = self.image.shape[:2]
|
||||
|
||||
for i in range(patch_size[0]):
|
||||
for j in range(patch_size[1]):
|
||||
metadata = {
|
||||
"image_path": str(self.image_path),
|
||||
"label_path": str(self.label_path),
|
||||
"tile_section": f"{i}, {j}",
|
||||
"tile_size": f"{hstep}, {wstep}",
|
||||
"patch_size": f"{patch_size[0]}, {patch_size[1]}",
|
||||
}
|
||||
tile_reference = f"i{i}j{j}"
|
||||
hrange = (i * hstep / h, (i + 1) * hstep / h)
|
||||
wrange = (j * wstep / w, (j + 1) * wstep / w)
|
||||
tile = self.image[i * hstep : (i + 1) * hstep, j * wstep : (j + 1) * wstep]
|
||||
|
||||
labels = None
|
||||
if self.labels is not None:
|
||||
labels = deepcopy(self.labels.get_labels(hrange, wrange))
|
||||
print(id(labels))
|
||||
|
||||
if labels is not None:
|
||||
print(hrange[0], wrange[0])
|
||||
for l in labels:
|
||||
print(l.bbox)
|
||||
[l.translate(wrange[0], hrange[0], 2, 2) for l in labels]
|
||||
print("translated")
|
||||
for l in labels:
|
||||
print(l.bbox)
|
||||
|
||||
# print(labels)
|
||||
yield tile_reference, tile, labels, metadata
|
||||
|
||||
def split_respective_to_label(self, padding: int = 67):
|
||||
if self.labels is None:
|
||||
raise ValueError("No labels found. Only images having labels can be split.")
|
||||
|
||||
for i, label in enumerate(self.labels):
|
||||
tile_reference = f"_lbl-{i+1:02d}"
|
||||
# print(label.bbox)
|
||||
metadata = {"image_path": str(self.image_path), "label_path": str(self.label_path), "label_index": str(i)}
|
||||
|
||||
xc_norm, yc_norm, h_norm, w_norm = label.bbox # normalized coords
|
||||
xc, yc, h, w = [
|
||||
int(np.round(f))
|
||||
for f in [
|
||||
xc_norm * self.image.shape[1],
|
||||
yc_norm * self.image.shape[0],
|
||||
h_norm * self.image.shape[0],
|
||||
w_norm * self.image.shape[1],
|
||||
]
|
||||
] # image coords
|
||||
|
||||
# print("img coords:", xc, yc, h, w)
|
||||
pad_xneg = padding + 1 # int(w / 2) + padding
|
||||
pad_xpos = padding # int(w / 2) + padding
|
||||
pad_yneg = padding + 1 # int(h / 2) + padding
|
||||
pad_ypos = padding # int(h / 2) + padding
|
||||
if xc - pad_xneg < 0:
|
||||
pad_xneg = xc
|
||||
if pad_xpos + xc > self.image.shape[1]:
|
||||
pad_xpos = self.image.shape[1] - xc
|
||||
if yc - pad_yneg < 0:
|
||||
pad_yneg = yc
|
||||
if pad_ypos + yc > self.image.shape[0]:
|
||||
pad_ypos = self.image.shape[0] - yc
|
||||
|
||||
# print("pads:", pad_xneg, pad_xpos, pad_yneg, pad_ypos)
|
||||
|
||||
tile = self.image[
|
||||
yc - pad_yneg : yc + pad_ypos,
|
||||
xc - pad_xneg : xc + pad_xpos,
|
||||
]
|
||||
ny, nx = tile.shape
|
||||
x_offset = pad_xneg
|
||||
y_offset = pad_yneg
|
||||
|
||||
# print("tile shape:", tile.shape)
|
||||
|
||||
yolo_annotation = f"{label.class_id} " # {x_offset/nx} {y_offset/ny} {h_norm} {w_norm} "
|
||||
yolo_annotation += " ".join(
|
||||
[
|
||||
f"{(x*self.image.shape[1]-(xc - x_offset))/nx:.6f} {(y*self.image.shape[0]-(yc-y_offset))/ny:.6f}"
|
||||
for x, y in label.polygon
|
||||
]
|
||||
)
|
||||
print(yolo_annotation)
|
||||
new_label = Label(yolo_annotation=yolo_annotation)
|
||||
|
||||
yield tile_reference, tile, [new_label], metadata
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
if args.output:
|
||||
args.output.mkdir(exist_ok=True, parents=True)
|
||||
(args.output / "images").mkdir(exist_ok=True)
|
||||
(args.output / "images-zoomed").mkdir(exist_ok=True)
|
||||
(args.output / "labels").mkdir(exist_ok=True)
|
||||
|
||||
for image_path in (args.input / "images").glob("*.tif"):
|
||||
data = ImageSplitter(
|
||||
image_path=image_path,
|
||||
label_path=(args.input / "labels" / image_path.stem).with_suffix(".txt"),
|
||||
)
|
||||
|
||||
if args.split_around_label:
|
||||
data = data.split_respective_to_label(padding=args.padding)
|
||||
else:
|
||||
data = data.split_into_tiles(patch_size=args.patch_size)
|
||||
|
||||
for tile_reference, tile, labels, metadata in data:
|
||||
print()
|
||||
print(tile_reference, tile.shape, labels, metadata) # len(labels) if labels else None)
|
||||
|
||||
# { debug
|
||||
debug = False
|
||||
if debug:
|
||||
plt.figure(figsize=(10, 10 * tile.shape[0] / tile.shape[1]))
|
||||
if labels is None:
|
||||
plt.imshow(tile, cmap="gray")
|
||||
plt.axis("off")
|
||||
plt.title(f"{image_path.name} ({tile_reference})")
|
||||
plt.show()
|
||||
continue
|
||||
|
||||
print(labels[0].bbox)
|
||||
# Draw annotations
|
||||
out = draw_annotations(
|
||||
cv2.cvtColor((tile / tile.max() * 255).astype(np.uint8), cv2.COLOR_GRAY2BGR),
|
||||
[l.to_string() for l in labels],
|
||||
alpha=0.1,
|
||||
)
|
||||
|
||||
# Convert BGR -> RGB for matplotlib display
|
||||
out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
||||
plt.imshow(out_rgb)
|
||||
plt.axis("off")
|
||||
plt.title(f"{image_path.name} ({tile_reference})")
|
||||
plt.show()
|
||||
# } debug
|
||||
|
||||
if args.output:
|
||||
# imwrite(args.output / "images" / f"{image_path.stem}_{tile_reference}.tif", tile, metadata=metadata)
|
||||
scale = 5
|
||||
tile_zoomed = zoom(tile, zoom=scale)
|
||||
metadata["scale"] = scale
|
||||
imwrite(
|
||||
args.output / "images" / f"{image_path.stem}_{tile_reference}.tif",
|
||||
tile_zoomed,
|
||||
metadata=metadata,
|
||||
imagej=True,
|
||||
)
|
||||
|
||||
if labels is not None:
|
||||
with open(args.output / "labels" / f"{image_path.stem}_{tile_reference}.txt", "w") as f:
|
||||
for label in labels:
|
||||
# label.offset_label(tile.shape[1], tile.shape[0])
|
||||
f.write(label.to_string() + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--input", type=Path)
|
||||
parser.add_argument("-o", "--output", type=Path)
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--patch-size",
|
||||
nargs=2,
|
||||
type=int,
|
||||
default=[2, 2],
|
||||
help="Number of patches along height and width, rows and columns, respectively",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-sal",
|
||||
"--split-around-label",
|
||||
action="store_true",
|
||||
help="If enabled, the image will be split around the label and for each label, a separate image will be created.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--padding",
|
||||
type=int,
|
||||
default=67,
|
||||
help="Padding around the label when splitting around the label.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
1
src/utils/show_yolo_seg.py
Symbolic link
1
src/utils/show_yolo_seg.py
Symbolic link
@@ -0,0 +1 @@
|
||||
../../tests/show_yolo_seg.py
|
||||
157
src/utils/ultralytics_16bit_patch.py
Normal file
157
src/utils/ultralytics_16bit_patch.py
Normal file
@@ -0,0 +1,157 @@
|
||||
"""Ultralytics runtime patches for 16-bit TIFF training.
|
||||
|
||||
Goals:
|
||||
- Use `tifffile` to decode `.tif/.tiff` reliably (OpenCV can silently drop bit-depth depending on codec).
|
||||
- Preserve 16-bit data through the dataloader as `uint16` tensors.
|
||||
- Fix Ultralytics trainer normalization (default divides by 255) to scale `uint16` correctly.
|
||||
- Avoid uint8-forcing augmentations by recommending/setting hyp values (handled by caller).
|
||||
|
||||
This module is intended to be imported/called **before** instantiating/using YOLO.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from src.utils.logger import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def apply_ultralytics_16bit_tiff_patches(*, force: bool = False) -> None:
|
||||
"""Apply runtime monkey-patches to Ultralytics to better support 16-bit TIFFs.
|
||||
|
||||
This function is safe to call multiple times.
|
||||
|
||||
Args:
|
||||
force: If True, re-apply patches even if already applied.
|
||||
"""
|
||||
|
||||
# Import inside function to ensure patching occurs before YOLO model/dataset is created.
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# import tifffile
|
||||
import torch
|
||||
from src.utils.image import Image
|
||||
|
||||
from ultralytics.utils import patches as ul_patches
|
||||
|
||||
already_patched = getattr(ul_patches.imread, "__name__", "") == "tifffile_imread"
|
||||
if already_patched and not force:
|
||||
return
|
||||
|
||||
_original_imread = ul_patches.imread
|
||||
|
||||
def tifffile_imread(filename: str, flags: int = cv2.IMREAD_COLOR, pseudo_rgb: bool = True) -> Optional[np.ndarray]:
|
||||
"""Replacement for [`ultralytics.utils.patches.imread()`](venv/lib/python3.12/site-packages/ultralytics/utils/patches.py:20).
|
||||
|
||||
- For `.tif/.tiff`, uses `tifffile.imread()` and preserves dtype (e.g. uint16).
|
||||
- For other formats, falls back to Ultralytics' original implementation.
|
||||
- Always returns HWC (3 dims). For grayscale, returns (H, W, 1) or (H, W, 3) depending on requested flags.
|
||||
"""
|
||||
# print("here")
|
||||
# return _original_imread(filename, flags)
|
||||
ext = os.path.splitext(filename)[1].lower()
|
||||
if ext in (".tif", ".tiff"):
|
||||
arr = Image(filename).get_qt_rgb()[:, :, :3]
|
||||
|
||||
# Normalize common shapes:
|
||||
# - (H, W) -> (H, W, 1)
|
||||
# - (C, H, W) -> (H, W, C) (heuristic)
|
||||
if arr is None:
|
||||
return None
|
||||
if arr.ndim == 3 and arr.shape[0] in (1, 3, 4) and arr.shape[0] < arr.shape[1]:
|
||||
arr = np.transpose(arr, (1, 2, 0))
|
||||
if arr.ndim == 2:
|
||||
arr = arr[..., None]
|
||||
|
||||
# Ensure contiguous array for downstream OpenCV ops.
|
||||
# logger.info(f"Loading with monkey-patched imread: {filename}")
|
||||
arr = arr.astype(np.float32)
|
||||
arr /= arr.max()
|
||||
arr *= 2**8 - 1
|
||||
arr = arr.astype(np.uint8)
|
||||
# print(arr.shape, arr.dtype, any(np.isnan(arr).flatten()), np.where(np.isnan(arr)), arr.min(), arr.max())
|
||||
return np.ascontiguousarray(arr)
|
||||
|
||||
# logger.info(f"Loading with original imread: {filename}")
|
||||
return _original_imread(filename, flags)
|
||||
|
||||
# Patch the canonical reference.
|
||||
ul_patches.imread = tifffile_imread
|
||||
|
||||
# Patch common module-level imports (some Ultralytics modules do `from ... import imread`).
|
||||
# Importing these modules is safe and helps ensure the patched function is used.
|
||||
try:
|
||||
import ultralytics.data.base as _ul_base
|
||||
|
||||
_ul_base.imread = tifffile_imread
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
import ultralytics.data.loaders as _ul_loaders
|
||||
|
||||
_ul_loaders.imread = tifffile_imread
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Patch trainer normalization: default divides by 255 regardless of input dtype.
|
||||
from ultralytics.models.yolo.detect import train as detect_train
|
||||
|
||||
_orig_preprocess_batch = detect_train.DetectionTrainer.preprocess_batch
|
||||
|
||||
def preprocess_batch_16bit(self, batch: dict) -> dict: # type: ignore[override]
|
||||
# Start from upstream behavior to keep device placement + multiscale identical,
|
||||
# but replace the 255 division with dtype-aware scaling.
|
||||
# logger.info(f"Preprocessing batch with monkey-patched preprocess_batch")
|
||||
for k, v in batch.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
batch[k] = v.to(self.device, non_blocking=self.device.type == "cuda")
|
||||
|
||||
img = batch.get("img")
|
||||
if isinstance(img, torch.Tensor):
|
||||
# Decide scaling denom based on dtype (avoid expensive reductions if possible).
|
||||
if img.dtype == torch.uint8:
|
||||
denom = 255.0
|
||||
elif img.dtype == torch.uint16:
|
||||
denom = 65535.0
|
||||
elif img.dtype.is_floating_point:
|
||||
# Assume already in 0-1 range if float.
|
||||
denom = 1.0
|
||||
else:
|
||||
# Generic integer fallback.
|
||||
try:
|
||||
denom = float(torch.iinfo(img.dtype).max)
|
||||
except Exception:
|
||||
denom = 255.0
|
||||
|
||||
batch["img"] = img.float() / denom
|
||||
|
||||
# Multi-scale branch copied from upstream to avoid re-introducing `/255` scaling.
|
||||
if getattr(self.args, "multi_scale", False):
|
||||
import math
|
||||
import random
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
imgs = batch["img"]
|
||||
sz = (
|
||||
random.randrange(int(self.args.imgsz * 0.5), int(self.args.imgsz * 1.5 + self.stride))
|
||||
// self.stride
|
||||
* self.stride
|
||||
)
|
||||
sf = sz / max(imgs.shape[2:])
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]]
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
batch["img"] = imgs
|
||||
|
||||
return batch
|
||||
|
||||
detect_train.DetectionTrainer.preprocess_batch = preprocess_batch_16bit
|
||||
|
||||
# Tag function to make it easier to detect patch state.
|
||||
setattr(detect_train.DetectionTrainer.preprocess_batch, "_ultralytics_16bit_patch", True)
|
||||
226
tests/show_yolo_seg.py
Normal file
226
tests/show_yolo_seg.py
Normal file
@@ -0,0 +1,226 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
show_yolo_seg.py
|
||||
|
||||
Usage:
|
||||
python show_yolo_seg.py /path/to/image.jpg /path/to/labels.txt
|
||||
|
||||
Supports:
|
||||
- Segmentation polygons: "class x1 y1 x2 y2 ... xn yn"
|
||||
- YOLO bbox lines as fallback: "class x_center y_center width height"
|
||||
Coordinates can be normalized [0..1] or absolute pixels (auto-detected).
|
||||
"""
|
||||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import random
|
||||
from shapely.geometry import LineString
|
||||
|
||||
from src.utils.image import Image
|
||||
|
||||
|
||||
def parse_label_line(line):
|
||||
parts = line.strip().split()
|
||||
if not parts:
|
||||
return None
|
||||
cls = int(float(parts[0]))
|
||||
coords = [float(x) for x in parts[1:]]
|
||||
return cls, coords
|
||||
|
||||
|
||||
def coords_are_normalized(coords):
|
||||
# If every coordinate is between 0 and 1 (inclusive-ish), assume normalized
|
||||
if not coords:
|
||||
return False
|
||||
return max(coords) <= 1.001
|
||||
|
||||
|
||||
def yolo_bbox_to_xyxy(coords, img_w, img_h):
|
||||
# coords: [xc, yc, w, h] normalized or absolute
|
||||
xc, yc, w, h = coords[:4]
|
||||
if max(coords) <= 1.001:
|
||||
xc *= img_w
|
||||
yc *= img_h
|
||||
w *= img_w
|
||||
h *= img_h
|
||||
x1 = int(round(xc - w / 2))
|
||||
y1 = int(round(yc - h / 2))
|
||||
x2 = int(round(xc + w / 2))
|
||||
y2 = int(round(yc + h / 2))
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def poly_to_pts(coords, img_w, img_h):
|
||||
# coords: [x1 y1 x2 y2 ...] either normalized or absolute
|
||||
if coords_are_normalized(coords[4:]):
|
||||
coords = [coords[i] * (img_w if i % 2 == 0 else img_h) for i in range(len(coords))]
|
||||
pts = np.array(coords, dtype=np.int32).reshape(-1, 2)
|
||||
return pts
|
||||
|
||||
|
||||
def random_color_for_class(cls):
|
||||
random.seed(cls) # deterministic per class
|
||||
return (
|
||||
0,
|
||||
0,
|
||||
255,
|
||||
) # tuple(int(x) for x in np.array([random.randint(0, 255) for _ in range(3)]))
|
||||
|
||||
|
||||
def draw_annotations(img, labels, alpha=0.4, draw_bbox_for_poly=True):
|
||||
# img: BGR numpy array
|
||||
overlay = img.copy()
|
||||
h, w = img.shape[:2]
|
||||
for line in labels:
|
||||
if isinstance(line, str):
|
||||
cls, coords = parse_label_line(line)
|
||||
if isinstance(line, tuple):
|
||||
cls, coords = line
|
||||
|
||||
if not coords:
|
||||
continue
|
||||
# polygon case (>=6 coordinates)
|
||||
if len(coords) >= 6:
|
||||
color = random_color_for_class(cls)
|
||||
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords[:4], w, h)
|
||||
print(x1, y1, x2, y2)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 1)
|
||||
|
||||
pts = poly_to_pts(coords[4:], w, h)
|
||||
# line = LineString(pts)
|
||||
# # Buffer distance in pixels
|
||||
# buffered = line.buffer(3, cap_style=2, join_style=2)
|
||||
# coords = np.array(buffered.exterior.coords, dtype=np.int32)
|
||||
# cv2.fillPoly(overlay, [coords], color=(255, 255, 255))
|
||||
|
||||
# fill on overlay
|
||||
cv2.fillPoly(overlay, [pts], color)
|
||||
# outline on base image
|
||||
cv2.polylines(img, [pts], isClosed=True, color=color, thickness=1)
|
||||
# put class text at first point
|
||||
x, y = int(pts[0, 0]), int(pts[0, 1]) - 6
|
||||
if 0:
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x, max(6, y)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
|
||||
# YOLO bbox case (4 coords)
|
||||
elif len(coords) == 4:
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords, w, h)
|
||||
color = random_color_for_class(cls)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x1, max(6, y1 - 4)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
else:
|
||||
# Unknown / invalid format, skip
|
||||
continue
|
||||
|
||||
# blend overlay for filled polygons
|
||||
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
|
||||
return img
|
||||
|
||||
|
||||
def load_labels_file(label_path):
|
||||
labels = []
|
||||
with open(label_path, "r") as f:
|
||||
for raw in f:
|
||||
line = raw.strip()
|
||||
if not line:
|
||||
continue
|
||||
parsed = parse_label_line(line)
|
||||
if parsed:
|
||||
labels.append(parsed)
|
||||
return labels
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Show YOLO segmentation / polygon annotations")
|
||||
parser.add_argument("image", type=str, help="Path to image file")
|
||||
parser.add_argument("--labels", type=str, help="Path to YOLO label file (polygons)")
|
||||
parser.add_argument("--alpha", type=float, default=0.4, help="Polygon fill alpha (0..1)")
|
||||
parser.add_argument("--no-bbox", action="store_true", help="Don't draw bounding boxes for polygons")
|
||||
args = parser.parse_args()
|
||||
|
||||
print(args)
|
||||
|
||||
img_path = Path(args.image)
|
||||
if args.labels:
|
||||
lbl_path = Path(args.labels)
|
||||
else:
|
||||
lbl_path = img_path.with_suffix(".txt")
|
||||
lbl_path = Path(str(lbl_path).replace("images", "labels"))
|
||||
|
||||
if not img_path.exists():
|
||||
print("Image not found:", img_path)
|
||||
sys.exit(1)
|
||||
if not lbl_path.exists():
|
||||
print("Label file not found:", lbl_path)
|
||||
sys.exit(1)
|
||||
|
||||
# img = cv2.imread(str(img_path), cv2.IMREAD_COLOR)
|
||||
img = (Image(img_path).get_qt_rgb() * 255).astype(np.uint8)
|
||||
|
||||
if img is None:
|
||||
print("Could not load image:", img_path)
|
||||
sys.exit(1)
|
||||
|
||||
labels = load_labels_file(str(lbl_path))
|
||||
if not labels:
|
||||
print("No labels parsed from", lbl_path)
|
||||
# continue and just show image
|
||||
out = draw_annotations(img.copy(), labels, alpha=args.alpha, draw_bbox_for_poly=(not args.no_bbox))
|
||||
|
||||
lclass, coords = labels[0]
|
||||
print(lclass, coords)
|
||||
bbox = coords[:4]
|
||||
print("bbox", bbox)
|
||||
bbox = np.array(bbox) * np.array([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
||||
yc, xc, h, w = bbox
|
||||
print("bbox", bbox)
|
||||
|
||||
# polyline = np.array(coords[4:]).reshape(-1, 2) * np.array([img.shape[1], img.shape[0]])
|
||||
polyline = np.array(coords).reshape(-1, 2) * np.array([img.shape[1], img.shape[0]])
|
||||
print("pl", coords[4:])
|
||||
print("pl", polyline)
|
||||
|
||||
# Convert BGR -> RGB for matplotlib display
|
||||
# out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
||||
out_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
# out_rgb = Image()
|
||||
plt.figure(figsize=(10, 10 * out.shape[0] / out.shape[1]))
|
||||
plt.imshow(out_rgb)
|
||||
plt.plot(polyline[:, 0], polyline[:, 1], "y", linewidth=2)
|
||||
if 0:
|
||||
plt.plot(
|
||||
[yc - h / 2, yc - h / 2, yc + h / 2, yc + h / 2, yc - h / 2],
|
||||
[xc - w / 2, xc + w / 2, xc + w / 2, xc - w / 2, xc - w / 2],
|
||||
"r",
|
||||
linewidth=2,
|
||||
)
|
||||
|
||||
# plt.axis("off")
|
||||
plt.title(f"{img_path.name} ({lbl_path.name})")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user