#!/usr/bin/env python3 """ Test script for training dataset preparation with 16-bit TIFFs. """ import numpy as np import tifffile from pathlib import Path import tempfile import sys import os import shutil # Add parent directory to path to import modules sys.path.insert(0, str(Path(__file__).parent.parent)) from src.utils.image import Image def test_float32_3ch_conversion(): """Test conversion of 16-bit TIFF to float32 3-channel TIFF.""" print("\n=== Testing Float32 3-Channel Conversion ===") # Create temporary directory structure with tempfile.TemporaryDirectory() as tmpdir: tmpdir = Path(tmpdir) src_dir = tmpdir / "original" dst_dir = tmpdir / "converted" src_dir.mkdir() dst_dir.mkdir() # Create test 16-bit TIFF test_data = np.zeros((100, 100), dtype=np.uint16) for i in range(100): for j in range(100): test_data[i, j] = int((i + j) / 198 * 65535) test_file = src_dir / "test_16bit.tif" tifffile.imwrite(test_file, test_data) print(f"Created test 16-bit TIFF: {test_file}") print(f" Shape: {test_data.shape}") print(f" Dtype: {test_data.dtype}") print(f" Range: [{test_data.min()}, {test_data.max()}]") # Simulate the conversion process print("\nConverting to float32 3-channel...") img_obj = Image(test_file) # Convert to float32 [0-1] float_data = img_obj.to_normalized_float32() # Replicate to 3 channels if len(float_data.shape) == 2: float_3ch = np.stack([float_data] * 3, axis=-1) else: float_3ch = float_data # Save as float32 TIFF output_file = dst_dir / "test_float32_3ch.tif" tifffile.imwrite(output_file, float_3ch.astype(np.float32)) print(f"Saved float32 3-channel TIFF: {output_file}") # Verify the output loaded = tifffile.imread(output_file) print(f"\nVerifying output:") print(f" Shape: {loaded.shape}") print(f" Dtype: {loaded.dtype}") print(f" Channels: {loaded.shape[2] if len(loaded.shape) == 3 else 1}") print(f" Range: [{loaded.min():.6f}, {loaded.max():.6f}]") print(f" Unique values: {len(np.unique(loaded[:,:,0]))}") # Assertions assert loaded.dtype == np.float32, f"Expected float32, got {loaded.dtype}" assert loaded.shape[2] == 3, f"Expected 3 channels, got {loaded.shape[2]}" assert ( 0.0 <= loaded.min() <= loaded.max() <= 1.0 ), f"Expected [0,1] range, got [{loaded.min()}, {loaded.max()}]" # Verify all channels are identical (replicated grayscale) assert np.array_equal( loaded[:, :, 0], loaded[:, :, 1] ), "Channel 0 and 1 should be identical" assert np.array_equal( loaded[:, :, 0], loaded[:, :, 2] ), "Channel 0 and 2 should be identical" # Verify float32 precision (not quantized to uint8 steps) unique_vals = len(np.unique(loaded[:, :, 0])) print(f"\n Precision check:") print(f" Unique values in channel: {unique_vals}") print(f" Source unique values: {len(np.unique(test_data))}") # The final unique values should match source (no loss from conversion) assert unique_vals == len( np.unique(test_data) ), f"Expected {len(np.unique(test_data))} unique values, got {unique_vals}" print("\n✓ All conversion tests passed!") print(" - Float32 dtype preserved") print(" - 3 channels created") print(" - Range [0-1] maintained") print(" - No precision loss from conversion") print(" - Channels properly replicated") return True if __name__ == "__main__": try: success = test_float32_3ch_conversion() sys.exit(0 if success else 1) except Exception as e: print(f"\n✗ Test failed with error: {e}") import traceback traceback.print_exc() sys.exit(1)