Files
object-segmentation/tests/test_16bit_tiff_loading.py
2025-12-13 00:32:32 +02:00

110 lines
3.0 KiB
Python

#!/usr/bin/env python3
"""
Test script for 16-bit TIFF loading and normalization.
"""
import numpy as np
import tifffile
from pathlib import Path
import tempfile
import sys
import os
# Add parent directory to path to import modules
sys.path.insert(0, str(Path(__file__).parent.parent))
from src.utils.image import Image
def create_test_16bit_tiff(output_path: str) -> str:
"""Create a test 16-bit grayscale TIFF file.
Args:
output_path: Path where to save the test TIFF
Returns:
Path to the created TIFF file
"""
# Create a 16-bit grayscale test image (100x100)
# With values ranging from 0 to 65535 (full 16-bit range)
height, width = 100, 100
# Create a gradient pattern
test_data = np.zeros((height, width), dtype=np.uint16)
for i in range(height):
for j in range(width):
# Create a diagonal gradient
test_data[i, j] = int((i + j) / (height + width - 2) * 65535)
# Save as TIFF
tifffile.imwrite(output_path, test_data)
print(f"Created test 16-bit TIFF: {output_path}")
print(f" Shape: {test_data.shape}")
print(f" Dtype: {test_data.dtype}")
print(f" Min value: {test_data.min()}")
print(f" Max value: {test_data.max()}")
return output_path
def test_image_loading():
"""Test loading 16-bit TIFF with the Image class."""
print("\n=== Testing Image Loading ===")
# Create temporary test file
with tempfile.NamedTemporaryFile(suffix=".tif", delete=False) as tmp:
test_path = tmp.name
try:
# Create test image
create_test_16bit_tiff(test_path)
# Load with Image class
print("\nLoading with Image class...")
img = Image(test_path)
print(f"Successfully loaded image:")
print(f" Width: {img.width}")
print(f" Height: {img.height}")
print(f" Channels: {img.channels}")
print(f" Dtype: {img.dtype}")
print(f" Format: {img.format}")
# Test normalization
print("\nTesting normalization to float32 [0-1]...")
normalized = img.to_normalized_float32()
print(f"Normalized image:")
print(f" Shape: {normalized.shape}")
print(f" Dtype: {normalized.dtype}")
print(f" Min value: {normalized.min():.6f}")
print(f" Max value: {normalized.max():.6f}")
print(f" Mean value: {normalized.mean():.6f}")
# Verify normalization
assert normalized.dtype == np.float32, "Dtype should be float32"
assert (
0.0 <= normalized.min() <= normalized.max() <= 1.0
), "Values should be in [0, 1]"
print("\n✓ All tests passed!")
return True
except Exception as e:
print(f"\n✗ Test failed with error: {e}")
import traceback
traceback.print_exc()
return False
finally:
# Cleanup
if os.path.exists(test_path):
os.remove(test_path)
print(f"\nCleaned up test file: {test_path}")
if __name__ == "__main__":
success = test_image_loading()
sys.exit(0 if success else 1)