350 lines
11 KiB
Python
Executable File
350 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Standalone training script for YOLO with 16-bit TIFF float32 support.
|
|
|
|
This script trains YOLO models on 16-bit grayscale TIFF datasets without data loss.
|
|
Converts images to float32 [0-1] on-the-fly using tifffile (no PIL/cv2).
|
|
|
|
Usage:
|
|
python scripts/train_float32_standalone.py \\
|
|
--data path/to/data.yaml \\
|
|
--weights yolov8s-seg.pt \\
|
|
--epochs 100 \\
|
|
--batch 16 \\
|
|
--imgsz 640
|
|
|
|
Based on the custom dataset approach to avoid Ultralytics' channel conversion issues.
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import tifffile
|
|
import yaml
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from ultralytics import YOLO
|
|
|
|
# Add project root to path
|
|
project_root = Path(__file__).parent.parent
|
|
sys.path.insert(0, str(project_root))
|
|
|
|
from src.utils.logger import get_logger
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
# ===================== Dataset =====================
|
|
|
|
|
|
class Float32YOLODataset(Dataset):
|
|
"""PyTorch dataset for 16-bit TIFF images with float32 conversion."""
|
|
|
|
def __init__(self, images_dir, labels_dir, img_size=640):
|
|
self.images_dir = Path(images_dir)
|
|
self.labels_dir = Path(labels_dir)
|
|
self.img_size = img_size
|
|
|
|
# Find images
|
|
extensions = {".tif", ".tiff", ".png", ".jpg", ".jpeg", ".bmp"}
|
|
self.paths = sorted(
|
|
[
|
|
p
|
|
for p in self.images_dir.rglob("*")
|
|
if p.is_file() and p.suffix.lower() in extensions
|
|
]
|
|
)
|
|
|
|
if not self.paths:
|
|
raise ValueError(f"No images found in {images_dir}")
|
|
|
|
logger.info(f"Dataset: {len(self.paths)} images from {images_dir}")
|
|
|
|
def __len__(self):
|
|
return len(self.paths)
|
|
|
|
def _read_image(self, path: Path) -> np.ndarray:
|
|
"""Load image as float32 [0-1] RGB."""
|
|
# Load with tifffile
|
|
img = tifffile.imread(str(path))
|
|
|
|
# Convert to float32
|
|
img = img.astype(np.float32)
|
|
|
|
# Normalize 16-bit→[0,1]
|
|
if img.max() > 1.5:
|
|
img = img / 65535.0
|
|
|
|
img = np.clip(img, 0.0, 1.0)
|
|
|
|
# Grayscale→RGB
|
|
if img.ndim == 2:
|
|
img = np.repeat(img[..., None], 3, axis=2)
|
|
elif img.ndim == 3 and img.shape[2] == 1:
|
|
img = np.repeat(img, 3, axis=2)
|
|
|
|
return img # float32 (H,W,3) [0,1]
|
|
|
|
def _parse_label(self, path: Path) -> np.ndarray:
|
|
"""Parse YOLO label with variable-length rows."""
|
|
if not path.exists():
|
|
return np.zeros((0, 5), dtype=np.float32)
|
|
|
|
labels = []
|
|
with open(path, "r") as f:
|
|
for line in f:
|
|
vals = line.strip().split()
|
|
if len(vals) >= 5:
|
|
labels.append([float(v) for v in vals])
|
|
|
|
return (
|
|
np.array(labels, dtype=np.float32)
|
|
if labels
|
|
else np.zeros((0, 5), dtype=np.float32)
|
|
)
|
|
|
|
def __getitem__(self, idx):
|
|
img_path = self.paths[idx]
|
|
label_path = self.labels_dir / f"{img_path.stem}.txt"
|
|
|
|
# Load & convert to tensor (C,H,W)
|
|
img = self._read_image(img_path)
|
|
img_t = torch.from_numpy(img).permute(2, 0, 1).contiguous()
|
|
|
|
# Load labels
|
|
labels = self._parse_label(label_path)
|
|
|
|
return img_t, labels, str(img_path.name)
|
|
|
|
|
|
# ===================== Collate =====================
|
|
|
|
|
|
def collate_fn(batch):
|
|
"""Stack images, keep labels as list."""
|
|
imgs = torch.stack([b[0] for b in batch], dim=0)
|
|
labels = [b[1] for b in batch]
|
|
names = [b[2] for b in batch]
|
|
return imgs, labels, names
|
|
|
|
|
|
# ===================== Training =====================
|
|
|
|
|
|
def get_pytorch_model(ul_model):
|
|
"""Extract PyTorch model and loss from Ultralytics wrapper."""
|
|
pt_model = None
|
|
loss_fn = None
|
|
|
|
# Try common patterns
|
|
if hasattr(ul_model, "model"):
|
|
pt_model = ul_model.model
|
|
if pt_model and hasattr(pt_model, "model"):
|
|
pt_model = pt_model.model
|
|
|
|
# Find loss
|
|
if pt_model and hasattr(pt_model, "loss"):
|
|
loss_fn = pt_model.loss
|
|
elif pt_model and hasattr(pt_model, "compute_loss"):
|
|
loss_fn = pt_model.compute_loss
|
|
|
|
if pt_model is None:
|
|
raise RuntimeError("Could not extract PyTorch model")
|
|
|
|
return pt_model, loss_fn
|
|
|
|
|
|
def train(args):
|
|
"""Main training function."""
|
|
device = args.device
|
|
logger.info(f"Device: {device}")
|
|
|
|
# Parse data.yaml
|
|
with open(args.data, "r") as f:
|
|
data_config = yaml.safe_load(f)
|
|
|
|
dataset_root = Path(data_config.get("path", Path(args.data).parent))
|
|
train_img = dataset_root / data_config.get("train", "train/images")
|
|
val_img = dataset_root / data_config.get("val", "val/images")
|
|
train_lbl = train_img.parent / "labels"
|
|
val_lbl = val_img.parent / "labels"
|
|
|
|
# Load model
|
|
logger.info(f"Loading {args.weights}")
|
|
ul_model = YOLO(args.weights)
|
|
pt_model, loss_fn = get_pytorch_model(ul_model)
|
|
|
|
# Configure model args
|
|
from types import SimpleNamespace
|
|
|
|
if not hasattr(pt_model, "args"):
|
|
pt_model.args = SimpleNamespace()
|
|
if isinstance(pt_model.args, dict):
|
|
pt_model.args = SimpleNamespace(**pt_model.args)
|
|
|
|
# Set segmentation loss args
|
|
pt_model.args.overlap_mask = getattr(pt_model.args, "overlap_mask", True)
|
|
pt_model.args.mask_ratio = getattr(pt_model.args, "mask_ratio", 4)
|
|
pt_model.args.task = "segment"
|
|
|
|
pt_model.to(device)
|
|
pt_model.train()
|
|
|
|
# Create datasets
|
|
train_ds = Float32YOLODataset(str(train_img), str(train_lbl), args.imgsz)
|
|
val_ds = Float32YOLODataset(str(val_img), str(val_lbl), args.imgsz)
|
|
|
|
train_loader = DataLoader(
|
|
train_ds,
|
|
batch_size=args.batch,
|
|
shuffle=True,
|
|
num_workers=4,
|
|
pin_memory=(device == "cuda"),
|
|
collate_fn=collate_fn,
|
|
)
|
|
val_loader = DataLoader(
|
|
val_ds,
|
|
batch_size=args.batch,
|
|
shuffle=False,
|
|
num_workers=2,
|
|
pin_memory=(device == "cuda"),
|
|
collate_fn=collate_fn,
|
|
)
|
|
|
|
# Optimizer
|
|
optimizer = torch.optim.AdamW(pt_model.parameters(), lr=args.lr)
|
|
|
|
# Training loop
|
|
os.makedirs(args.save_dir, exist_ok=True)
|
|
best_loss = float("inf")
|
|
|
|
for epoch in range(args.epochs):
|
|
t0 = time.time()
|
|
running_loss = 0.0
|
|
num_batches = 0
|
|
|
|
for imgs, labels_list, names in train_loader:
|
|
imgs = imgs.to(device)
|
|
optimizer.zero_grad()
|
|
num_batches += 1
|
|
|
|
# Forward (simple approach - just use preds)
|
|
preds = pt_model(imgs)
|
|
|
|
# Try to compute loss
|
|
# Simplest fallback: if preds is tuple/list, assume last element is loss
|
|
if isinstance(preds, (tuple, list)):
|
|
# Often YOLO forward returns (preds, loss) in training mode
|
|
if (
|
|
len(preds) >= 2
|
|
and isinstance(preds[-1], dict)
|
|
and "loss" in preds[-1]
|
|
):
|
|
loss = preds[-1]["loss"]
|
|
elif len(preds) >= 2 and isinstance(preds[-1], torch.Tensor):
|
|
loss = preds[-1]
|
|
else:
|
|
# Manually compute using loss_fn if available
|
|
if loss_fn:
|
|
# This may fail - see logs
|
|
try:
|
|
loss_out = loss_fn(preds, labels_list)
|
|
loss = (
|
|
loss_out[0]
|
|
if isinstance(loss_out, (tuple, list))
|
|
else loss_out
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Loss computation failed: {e}")
|
|
logger.error(
|
|
"Consider using Ultralytics .train() or check model/loss compatibility"
|
|
)
|
|
raise
|
|
else:
|
|
raise RuntimeError("Cannot determine loss from model output")
|
|
elif isinstance(preds, dict) and "loss" in preds:
|
|
loss = preds["loss"]
|
|
else:
|
|
raise RuntimeError(f"Unexpected preds format: {type(preds)}")
|
|
|
|
# Backward
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
running_loss += loss.item()
|
|
|
|
if (num_batches % 10) == 0:
|
|
logger.info(
|
|
f"Epoch {epoch+1} Batch {num_batches} Loss: {loss.item():.4f}"
|
|
)
|
|
|
|
epoch_loss = running_loss / max(1, num_batches)
|
|
epoch_time = time.time() - t0
|
|
logger.info(
|
|
f"Epoch {epoch+1}/{args.epochs} - Loss: {epoch_loss:.4f}, Time: {epoch_time:.1f}s"
|
|
)
|
|
|
|
# Save checkpoint
|
|
ckpt = Path(args.save_dir) / f"epoch{epoch+1}.pt"
|
|
torch.save(
|
|
{
|
|
"epoch": epoch + 1,
|
|
"model_state_dict": pt_model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict(),
|
|
"loss": epoch_loss,
|
|
},
|
|
ckpt,
|
|
)
|
|
|
|
# Save best
|
|
if epoch_loss < best_loss:
|
|
best_loss = epoch_loss
|
|
best_ckpt = Path(args.save_dir) / "best.pt"
|
|
torch.save(pt_model.state_dict(), best_ckpt)
|
|
logger.info(f"New best: {best_ckpt}")
|
|
|
|
logger.info("Training complete")
|
|
|
|
|
|
# ===================== Main =====================
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Train YOLO on 16-bit TIFF with float32"
|
|
)
|
|
parser.add_argument("--data", type=str, required=True, help="Path to data.yaml")
|
|
parser.add_argument(
|
|
"--weights", type=str, default="yolov8s-seg.pt", help="Pretrained weights"
|
|
)
|
|
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
|
|
parser.add_argument("--batch", type=int, default=16, help="Batch size")
|
|
parser.add_argument("--imgsz", type=int, default=640, help="Image size")
|
|
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
|
|
parser.add_argument(
|
|
"--save-dir", type=str, default="runs/train", help="Save directory"
|
|
)
|
|
parser.add_argument(
|
|
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
logger.info("=" * 70)
|
|
logger.info("Float32 16-bit TIFF Training - Standalone Script")
|
|
logger.info("=" * 70)
|
|
logger.info(f"Data: {args.data}")
|
|
logger.info(f"Weights: {args.weights}")
|
|
logger.info(f"Epochs: {args.epochs}, Batch: {args.batch}, ImgSz: {args.imgsz}")
|
|
logger.info(f"LR: {args.lr}, Device: {args.device}")
|
|
logger.info("=" * 70)
|
|
|
|
train(args)
|