Files
object-segmentation/tests/test_training_dataset_prep.py

143 lines
4.9 KiB
Python

#!/usr/bin/env python3
"""
Test script for training dataset preparation with 16-bit TIFFs.
"""
import numpy as np
import tifffile
from pathlib import Path
import tempfile
import sys
import os
import shutil
# Add parent directory to path to import modules
sys.path.insert(0, str(Path(__file__).parent.parent))
from src.utils.image import Image
def test_float32_3ch_conversion():
"""Test conversion of 16-bit TIFF to 16-bit RGB PNG."""
print("\n=== Testing 16-bit RGB PNG Conversion ===")
# Create temporary directory structure
with tempfile.TemporaryDirectory() as tmpdir:
tmpdir = Path(tmpdir)
src_dir = tmpdir / "original"
dst_dir = tmpdir / "converted"
src_dir.mkdir()
dst_dir.mkdir()
# Create test 16-bit TIFF
test_data = np.zeros((100, 100), dtype=np.uint16)
for i in range(100):
for j in range(100):
test_data[i, j] = int((i + j) / 198 * 65535)
test_file = src_dir / "test_16bit.tif"
tifffile.imwrite(test_file, test_data)
print(f"Created test 16-bit TIFF: {test_file}")
print(f" Shape: {test_data.shape}")
print(f" Dtype: {test_data.dtype}")
print(f" Range: [{test_data.min()}, {test_data.max()}]")
# Simulate the conversion process (matching training_tab.py)
print("\nConverting to 16-bit RGB PNG using PIL merge...")
img_obj = Image(test_file)
from PIL import Image as PILImage
# Get uint16 data
uint16_data = img_obj.data
# Use PIL's merge method with 'I;16' channels (proper way for 16-bit RGB)
if len(uint16_data.shape) == 2:
# Grayscale - replicate to RGB
r_img = PILImage.fromarray(uint16_data, mode="I;16")
g_img = PILImage.fromarray(uint16_data, mode="I;16")
b_img = PILImage.fromarray(uint16_data, mode="I;16")
else:
r_img = PILImage.fromarray(uint16_data[:, :, 0], mode="I;16")
g_img = PILImage.fromarray(
(
uint16_data[:, :, 1]
if uint16_data.shape[2] > 1
else uint16_data[:, :, 0]
),
mode="I;16",
)
b_img = PILImage.fromarray(
(
uint16_data[:, :, 2]
if uint16_data.shape[2] > 2
else uint16_data[:, :, 0]
),
mode="I;16",
)
# Merge channels into RGB
rgb_img = PILImage.merge("RGB", (r_img, g_img, b_img))
# Save as PNG
output_file = dst_dir / "test_16bit_rgb.png"
rgb_img.save(output_file)
print(f"Saved 16-bit RGB PNG: {output_file}")
print(f" PIL mode after merge: {rgb_img.mode}")
# Verify the output - Load with OpenCV (as YOLO does)
import cv2
loaded = cv2.imread(str(output_file), cv2.IMREAD_UNCHANGED)
print(f"\nVerifying output (loaded with OpenCV):")
print(f" Shape: {loaded.shape}")
print(f" Dtype: {loaded.dtype}")
print(f" Channels: {loaded.shape[2] if len(loaded.shape) == 3 else 1}")
print(f" Range: [{loaded.min()}, {loaded.max()}]")
print(f" Unique values: {len(np.unique(loaded[:,:,0]))}")
# Assertions
assert loaded.dtype == np.uint16, f"Expected uint16, got {loaded.dtype}"
assert loaded.shape[2] == 3, f"Expected 3 channels, got {loaded.shape[2]}"
assert (
loaded.min() >= 0 and loaded.max() <= 65535
), f"Expected [0,65535] range, got [{loaded.min()}, {loaded.max()}]"
# Verify all channels are identical (replicated grayscale)
assert np.array_equal(
loaded[:, :, 0], loaded[:, :, 1]
), "Channel 0 and 1 should be identical"
assert np.array_equal(
loaded[:, :, 0], loaded[:, :, 2]
), "Channel 0 and 2 should be identical"
# Verify no data loss
unique_vals = len(np.unique(loaded[:, :, 0]))
print(f"\n Precision check:")
print(f" Unique values in channel: {unique_vals}")
print(f" Source unique values: {len(np.unique(test_data))}")
assert unique_vals == len(
np.unique(test_data)
), f"Expected {len(np.unique(test_data))} unique values, got {unique_vals}"
print("\n✓ All conversion tests passed!")
print(" - uint16 dtype preserved")
print(" - 3 channels created")
print(" - Range [0-65535] maintained")
print(" - No precision loss from conversion")
print(" - Channels properly replicated")
return True
if __name__ == "__main__":
try:
success = test_float32_3ch_conversion()
sys.exit(0 if success else 1)
except Exception as e:
print(f"\n✗ Test failed with error: {e}")
import traceback
traceback.print_exc()
sys.exit(1)