11 KiB
11 KiB
Project Plan Summary - Microscopy Object Detection Application
Executive Summary
This document provides a high-level overview of the planned microscopy object detection application. The application will enable users to train, validate, and deploy YOLOv8-based object detection models for microscopy images, with comprehensive GUI, database storage, and visualization capabilities.
Project Goals
- Detect Objects: Identify organelles and membrane branching structures in microscopy images
- Train Models: Fine-tune YOLOv8s on custom datasets with YOLO format annotations
- Manage Results: Store and query detection results in SQLite database
- Visualize Data: Interactive plots and image viewers for analysis
- Export Results: Flexible export options (CSV, JSON, Excel)
- Future Annotation: Provide manual annotation capabilities for dataset preparation
Key Technologies
| Component | Technology | Purpose |
|---|---|---|
| ML Framework | Ultralytics YOLOv8 | Object detection model |
| GUI | PySide6 | Desktop application interface |
| Visualization | pyqtgraph | Real-time plots and charts |
| Database | SQLite | Detection results storage |
| Image Processing | OpenCV, Pillow | Image manipulation |
Application Architecture
Three-Layer Architecture
┌─────────────────────────────────────┐
│ GUI Layer (PySide6) │
│ - Main Window with Tabs │
│ - Dialogs & Custom Widgets │
└──────────────┬──────────────────────┘
│
┌──────────────▼──────────────────────┐
│ Business Logic Layer │
│ - YOLO Wrapper │
│ - Inference Engine │
│ - Database Manager │
│ - Config Manager │
└──────────────┬──────────────────────┘
│
┌──────────────▼──────────────────────┐
│ Data Layer │
│ - SQLite Database │
│ - File System (images, models) │
│ - YOLOv8 Model Files │
└─────────────────────────────────────┘
Core Features
1. Detection Tab ✨
- Single Image Detection: Select and detect objects in one image
- Batch Processing: Process entire folders of images
- Real-time Preview: View detections with bounding boxes
- Confidence Control: Adjustable threshold slider
- Database Storage: Automatic saving of results with metadata
2. Training Tab 🎓
- Dataset Selection: Browse for YOLO format datasets
- Parameter Configuration: Epochs, batch size, image size, learning rate
- Progress Monitoring: Real-time training metrics and loss curves
- Model Versioning: Automatic model naming and version tracking
- Validation Metrics: Track mAP, precision, recall during training
3. Validation Tab 📊
- Model Evaluation: Validate models on test datasets
- Metrics Visualization:
- Confusion matrix
- Precision-Recall curves
- Class-wise performance
- Model Comparison: Compare multiple model versions
4. Results Tab 📈
- Detection Browser: Searchable table of all detections
- Advanced Filtering: By date, model, class, confidence
- Statistics Dashboard:
- Detection count by class
- Confidence distribution
- Timeline visualization
- Export Options: CSV, JSON, Excel formats
5. Annotation Tab 🖊️ (Future Feature)
- Image Browser: Navigate through image repository
- Drawing Tools: Create bounding boxes
- Class Assignment: Label objects
- YOLO Export: Export annotations for training
Database Design
Tables Overview
| Table | Purpose | Key Fields |
|---|---|---|
| models | Store trained models | name, version, path, metrics |
| images | Image metadata | path, dimensions, checksum |
| detections | Detection results | bbox, class, confidence |
| annotations | Manual labels | bbox, class, annotator |
Key Relationships
- Each detection links to one image and one model
- Each image can have multiple detections from multiple models
- Annotations are separate from automated detections
Implementation Phases
Phase 1: Core Foundation (Weeks 1-2)
- Architecture design and documentation
- Project structure setup
- Database schema implementation
- YOLO wrapper basic functionality
- Database manager CRUD operations
Phase 2: GUI Development (Weeks 3-4)
- Main window and tab structure
- Detection tab implementation
- Training tab implementation
- Basic visualization widgets
- Configuration management
Phase 3: Advanced Features (Weeks 5-6)
- Validation tab with metrics
- Results tab with filtering
- Export functionality
- Error handling and logging
- Performance optimization
Phase 4: Polish & Testing (Week 7)
- Unit tests for all components
- Integration testing
- User documentation
- Bug fixes and refinements
- Deployment preparation
Phase 5: Future Enhancements (Post-Launch)
- Annotation tool
- Real-time camera detection
- Multi-model ensemble
- Cloud integration
File Structure
object_detection/
├── main.py # Entry point
├── requirements.txt # Dependencies
├── README.md # User documentation
├── ARCHITECTURE.md # Technical architecture
├── IMPLEMENTATION_GUIDE.md # Development guide
├── PLAN_SUMMARY.md # This file
│
├── config/
│ └── app_config.yaml # Application settings
│
├── src/
│ ├── database/ # Database layer
│ │ ├── db_manager.py # Main database operations
│ │ ├── models.py # Data classes
│ │ └── schema.sql # SQL schema
│ │
│ ├── model/ # ML layer
│ │ ├── yolo_wrapper.py # YOLO interface
│ │ └── inference.py # Detection engine
│ │
│ ├── gui/ # Presentation layer
│ │ ├── main_window.py # Main app window
│ │ ├── tabs/ # Feature tabs
│ │ ├── dialogs/ # Popup dialogs
│ │ └── widgets/ # Custom widgets
│ │
│ └── utils/ # Utilities
│ ├── config_manager.py # Config handling
│ ├── logger.py # Logging setup
│ └── file_utils.py # File operations
│
├── data/ # Runtime data
│ ├── models/ # Trained models
│ ├── datasets/ # Training data
│ └── results/ # Detection outputs
│
├── tests/ # Test suite
│ ├── test_database.py
│ ├── test_model.py
│ └── test_gui.py
│
├── logs/ # Application logs
└── docs/ # Additional docs
User Workflows
Workflow 1: First-Time Setup
- Launch application
- Configure image repository path in Settings
- Download/verify YOLOv8s.pt base model
- Ready to detect!
Workflow 2: Quick Detection
- Open Detection tab
- Select pre-trained model
- Choose image or folder
- Adjust confidence threshold
- Click "Detect"
- View results and save to database
Workflow 3: Train Custom Model
- Prepare dataset in YOLO format
- Open Training tab
- Select data.yaml file
- Configure hyperparameters
- Start training
- Monitor progress
- Model saved automatically with metrics
Workflow 4: Analyze Results
- Open Results tab
- Apply filters (date range, class, model)
- View statistics dashboard
- Export filtered results to CSV/JSON
Data Formats
YOLO Annotation Format
<class_id> <x_center> <y_center> <width> <height>
- All coordinates normalized (0-1)
- One line per object
- Separate .txt file for each image
Detection Output Format
{
"image_id": 123,
"image_path": "relative/path/to/image.jpg",
"model_id": 5,
"model_name": "organelle_detector_v1",
"detections": [
{
"class_name": "organelle",
"confidence": 0.95,
"bbox": [0.1, 0.2, 0.3, 0.4],
"detected_at": "2024-12-04T15:30:00Z"
}
]
}
Performance Requirements
| Metric | Target | Notes |
|---|---|---|
| Detection Speed | < 1s per image | On GPU for 640x640 images |
| Training Start | < 5s | Model loading time |
| Database Query | < 100ms | For 10k detections |
| GUI Responsiveness | < 100ms | UI interactions |
| Memory Usage | < 4GB | During inference |
| Batch Processing | 100+ images | Without memory issues |
Risk Mitigation
| Risk | Impact | Mitigation Strategy |
|---|---|---|
| CUDA/GPU issues | High | Fallback to CPU mode |
| Database corruption | Medium | Regular backups, transactions |
| Large datasets | Medium | Lazy loading, pagination |
| Memory overflow | High | Batch size limits, monitoring |
| Model compatibility | Low | Version checking, validation |
Success Criteria
- ✅ Successfully detect objects in microscopy images
- ✅ Train custom models with >80% mAP50
- ✅ Store and retrieve detection results efficiently
- ✅ Intuitive GUI requiring minimal training
- ✅ Process 100+ images in batch mode
- ✅ Export results in multiple formats
- ✅ Comprehensive documentation
Next Steps
- Review this plan with stakeholders
- Gather feedback on features and priorities
- Confirm requirements are fully captured
- Switch to Code mode to begin implementation
- Follow the implementation guide for development
- Iterate based on testing and user feedback
Questions for Stakeholders
Before proceeding to implementation, please consider:
- Are there any additional object classes beyond organelles and membrane branches?
- What is the typical size of your microscopy images?
- Do you need multi-user support or is single-user sufficient?
- Are there specific export formats you need beyond CSV/JSON/Excel?
- What is your expected dataset size (number of images)?
- Do you need support for 3D/volumetric microscopy images?
- Any specific visualization requirements?
- Integration with other tools or workflows?
Resources Required
Development Time
- Phase 1-3: ~6 weeks development
- Phase 4: ~1 week testing & polish
- Total: ~7 weeks for initial release
Hardware Requirements
- Development machine with CUDA GPU (recommended)
- 16GB RAM minimum
- 50GB storage for development
Software Dependencies
- All listed in
requirements.txt - Total size: ~2GB when installed
Ready to proceed with implementation? Let's build this! 🚀