added sigma plots for intensity

This commit is contained in:
Otto Gustavson
2025-10-14 16:16:50 +03:00
parent 7ec9a7ed12
commit 5c1077f3d7

75
plot.py
View File

@@ -5,6 +5,8 @@ import matplotlib.pyplot as plt
import h5py
import glob
import argparse
import csv
import re
from scipy.signal import find_peaks
@@ -12,6 +14,8 @@ parser = argparse.ArgumentParser()
parser.add_argument('--infile', type = str, required = True, help = 'file name of the .h5 file for names')
parser.add_argument('--data', type = str, required = True, help = "write only the part of 1 file name before the _(nr-s).npy; files for creating the plots")
parser.add_argument('--images', type = str, default = "mse_mssim", help = "naming the output images, default = mse_mssim")
parser.add_argument('-q','--squared', action = argparse.BooleanOptionalAction, help = "squares the intensity values, otherwise normal values")
parser.add_argument('-sp', '--sigma_plots', action = argparse.BooleanOptionalAction, help = 'shows the plots, where all intensity values of a sigma value are on one plot')
args = parser.parse_args()
@@ -27,11 +31,65 @@ with h5py.File(args.infile, 'r') as hdf5_file:
datasets.append(ds_name) # appenditakse
group_to_datasets[group_name] = datasets # iga grupile apenditakse tema oma ds
group_names = list(group_to_datasets.keys()) # has all the groups which are different inensitires and
# all the datasets names are there with sigma and minimum but i only use sigma so the rest are not used at all
labels = group_to_datasets.get(group_names[0]) # gets all the groups labels in a list
npy_files = sorted(glob.glob(f"{args.data}*.npy"))
group_names = list(group_to_datasets.keys())
if args.sigma_plots:
column_accumulators = None
for filename in npy_files:
data = np.load(filename)
iterations = data[:,0]
cols_rem = data.shape[1] - 1
cols = cols_rem // 2
mses = data[:, 1:1+cols]
#mssim = data[:, 1+cols:1+2*cols]
if column_accumulators is None:
column_accumulators = [[] for _ in range(mses.shape[1])]
for i in range(mses.shape[1]):
column_accumulators[i].append(mses[:, i])
column_vars = [np.column_stack(col) for col in column_accumulators]
flat_numbers = np.array([float(n) for s in group_names for n in re.findall(r"-?\d+\.?\d*", s)])
flat_numbers[flat_numbers < 1] = 1
flat_numbers = np.square(flat_numbers)
for i, col in enumerate(column_vars):
plt.figure(figsize=(15,9))
for j in range(col.shape[1]):
if args.squared:
plt.plot(col[:, j] * flat_numbers[j], label = group_names[j])
else:
plt.plot(col[:, j], label = group_names[j])
plt.title(f"{labels[i]}")
plt.legend()
#plt.show()
with open('mse.csv', 'w', newline='') as csvfile, open('mssim.csv', 'w', newline='') as f2:
writer = csv.writer(csvfile)
writer2 = csv.writer(f2)
header = False
for group_name, filename in zip(group_names, npy_files): #üle kõigi mürade
labels = group_to_datasets[group_name]
if not header:
writer.writerow([''] + labels)
writer2.writerow([''] + labels)
header = True
row = [group_name]
row2 = [group_name]
data = np.load(filename)
iterations = data[:,0]
@@ -40,21 +98,15 @@ for group_name, filename in zip(group_names, npy_files): #üle kõigi mürade
mses = data[:, 1:1+cols]
mssim = data[:, 1+cols:1+2*cols]
#print(f"keskmine mses {group_name}",np.mean(mses))
#print(f"keskmine mssim {group_name}",np.mean(mssim))
#np.set_printoptions(threshold=np.inf)
#print("---",mssim)
fig, ax = plt.subplots(2, 1, figsize = (15,9))
ax0 = ax[0]
ax1 = ax[1]
labels = group_to_datasets[group_name]
#print("######################################################################")
for i in range(mses.shape[1]): #üle kõigi sigmade
ax0.plot(iterations, mses[:, i], label = labels[i])
#print(np.argmin(mses[:,i]))
#print(f"------{i}--------------------{i}-----------------")
row.append(np.min(mses[:,i]))
ax0.set_xlabel('iterations')
ax0.set_ylabel('mse')
@@ -65,12 +117,17 @@ for group_name, filename in zip(group_names, npy_files): #üle kõigi mürade
for i in range(mssim.shape[1]):
ax1.plot(iterations, mssim[:, i], label = labels[i])
row2.append(np.max(mssim[:,i]))
ax1.set_xlabel('iterations')
ax1.set_ylabel('mssim')
ax1.set_title(f'mssim - {group_name}')
ax1.legend()
ax1.grid(False)
writer.writerow(row)
writer2.writerow(row2)
plt.tight_layout()
plt.savefig(f"{args.images}_{group_name}.png")