diff --git a/statistiline_filter.py b/statistical_filter.py similarity index 96% rename from statistiline_filter.py rename to statistical_filter.py index a68cbd7..569050c 100644 --- a/statistiline_filter.py +++ b/statistical_filter.py @@ -1,84 +1,84 @@ -import h5py -import os -import pandas as pd - -h5_file = 'ltcc_current.h5' - -sobiv_eid_list = [] -ttx_eid_list = [] -teised_eid_list = [] - -with h5py.File(h5_file, 'r') as h5_file: - - for eid in h5_file.keys(): - if 'tag' in h5_file[eid].attrs: - tag_val = h5_file[eid].attrs['tag'] - - if isinstance(tag_val, bytes): - tag_val = tag_val.decode('utf-8') - - puhas_eid = eid.replace(" ", "_").replace(":", "-") - fit_result_eid = "fit_results_" + puhas_eid - - if tag_val == 'iso': - sobiv_eid_list.append(fit_result_eid) - elif tag_val == 'ttx': - ttx_eid_list.append(fit_result_eid) - else: - teised_eid_list.append(fit_result_eid) - -file = 'ltcc_current.h5' - -with h5py.File(file, 'r') as h5_file: - for eid in h5_file.keys(): - puhastatud_eid = eid.replace(" ", "_").replace(":", "-") - - atribuudid = h5_file[eid].attrs - sex = atribuudid.get('sex') - spid = atribuudid.get('spid') - - csv_file_name = f"fit_results_{puhastatud_eid}.csv" - - if os.path.exists(csv_file_name): - df = pd.read_csv(csv_file_name) - - df['sex'] = sex - df['spid'] = spid.replace("Mouse AGAT", "") - df['eid'] = eid - df.to_csv(csv_file_name, index=False) - -for fail in os.listdir(): - if fail.endswith('.csv'): - - eksperiment_id = fail.replace(".csv", "") - - if eksperiment_id in sobiv_eid_list: - - df = pd.read_csv(fail) - df['tag'] = 'iso' - df.to_csv(fail, index=False) - - elif eksperiment_id in ttx_eid_list: - - df = pd.read_csv(fail) - df['tag'] = 'ttx' - df.to_csv(fail, index=False) - - else: - - df = pd.read_csv(fail) - df['tag'] = 'teised' - df.to_csv(fail, index=False) - -comb_df = pd.DataFrame() - -for filename in os.listdir(): - - if filename.endswith('.csv'): - df = pd.read_csv(filename) - - if 'tag' in df.columns and df['tag'].isin(['iso', 'ttx']).all(): - - comb_df = pd.concat([comb_df, df], ignore_index=True) - -print(comb_df) +import h5py +import os +import pandas as pd + +h5_file = 'ltcc_current.h5' + +sobiv_eid_list = [] +ttx_eid_list = [] +teised_eid_list = [] + +with h5py.File(h5_file, 'r') as h5_file: + + for eid in h5_file.keys(): + if 'tag' in h5_file[eid].attrs: + tag_val = h5_file[eid].attrs['tag'] + + if isinstance(tag_val, bytes): + tag_val = tag_val.decode('utf-8') + + puhas_eid = eid.replace(" ", "_").replace(":", "-") + fit_result_eid = "fit_results_" + puhas_eid + + if tag_val == 'iso': + sobiv_eid_list.append(fit_result_eid) + elif tag_val == 'ttx': + ttx_eid_list.append(fit_result_eid) + else: + teised_eid_list.append(fit_result_eid) + +file = 'ltcc_current.h5' + +with h5py.File(file, 'r') as h5_file: + for eid in h5_file.keys(): + puhastatud_eid = eid.replace(" ", "_").replace(":", "-") + + atribuudid = h5_file[eid].attrs + sex = atribuudid.get('sex') + spid = atribuudid.get('spid') + + csv_file_name = f"fit_results_{puhastatud_eid}.csv" + + if os.path.exists(csv_file_name): + df = pd.read_csv(csv_file_name) + + df['sex'] = sex + df['spid'] = spid.replace("Mouse AGAT", "") + df['eid'] = eid + df.to_csv(csv_file_name, index=False) + +for fail in os.listdir(): + if fail.endswith('.csv'): + + eksperiment_id = fail.replace(".csv", "") + + if eksperiment_id in sobiv_eid_list: + + df = pd.read_csv(fail) + df['tag'] = 'iso' + df.to_csv(fail, index=False) + + elif eksperiment_id in ttx_eid_list: + + df = pd.read_csv(fail) + df['tag'] = 'ttx' + df.to_csv(fail, index=False) + + else: + + df = pd.read_csv(fail) + df['tag'] = 'teised' + df.to_csv(fail, index=False) + +comb_df = pd.DataFrame() + +for filename in os.listdir(): + + if filename.endswith('.csv'): + df = pd.read_csv(filename) + + if 'tag' in df.columns and df['tag'].isin(['iso', 'ttx']).all(): + + comb_df = pd.concat([comb_df, df], ignore_index=True) + +print(comb_df)