debugging of fitter, many issues still persist
This commit is contained in:
parent
6e7a727b1a
commit
7cf6590f94
148
fitter.py
148
fitter.py
@ -6,7 +6,8 @@ import re
|
|||||||
|
|
||||||
|
|
||||||
from scipy.optimize import least_squares
|
from scipy.optimize import least_squares
|
||||||
from model import Model
|
from scipy.linalg import svd
|
||||||
|
from Model import Model
|
||||||
from Data import Data
|
from Data import Data
|
||||||
|
|
||||||
|
|
||||||
@ -81,38 +82,38 @@ class Fitter:
|
|||||||
plt.show()
|
plt.show()
|
||||||
# exit()
|
# exit()
|
||||||
|
|
||||||
return res # , measured_fluo - calculated_fluo)
|
return res, err # , measured_fluo - calculated_fluo)
|
||||||
|
|
||||||
def optimize(self, init_parameters=None):
|
def optimize(self, init_parameters=None):
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
self.iteration = 0
|
self.iteration = 0
|
||||||
if init_parameters is None:
|
if init_parameters is None:
|
||||||
m = self.model()
|
m = self.model()
|
||||||
K_pc_half = m.K_pc_half
|
K_pc_half = m.K_pc_half
|
||||||
tau_xfer = m.tau_xfer
|
tau_xfer = m.tau_xfer
|
||||||
tau_RC = 1.5
|
tau_RC = 1.5
|
||||||
offset = 0
|
offset = 0
|
||||||
|
|
||||||
d = self.data
|
d = self.data
|
||||||
init_parameters = np.array([d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset])
|
init_parameters = np.array([d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset])
|
||||||
print(init_parameters.tolist())
|
print(init_parameters.tolist())
|
||||||
|
|
||||||
bounds = (
|
bounds = (
|
||||||
(0.01, 10, 0.1, 0.1, 0.1, -5, -10),
|
(0.01, 10, 0.1, 0.1, 0.1, -5, -10),
|
||||||
(10, 100, 100, 1, 100, 10, 10),
|
(10, 100, 100, 1, 100, 10, 10),
|
||||||
)
|
)
|
||||||
|
|
||||||
res = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
res, err = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
||||||
print()
|
print()
|
||||||
print(" Parameters: [gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset]")
|
print(" Parameters: [gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset]")
|
||||||
print(" Initial:", init_parameters.tolist())
|
print(" Initial:", init_parameters.tolist())
|
||||||
print(" Optimized:", res.x.tolist())
|
print(" Optimized:", res.x.tolist())
|
||||||
print(" Optim status:", res.status)
|
print(" Optim status:", res.status)
|
||||||
print("Optim message:", res.message)
|
print("Optim message:", res.message)
|
||||||
|
|
||||||
gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset = res.x
|
gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset = res.x
|
||||||
|
|
||||||
self.fit_results.update({
|
self.fit_results.update({
|
||||||
'gGaL': gGaL,
|
'gGaL': gGaL,
|
||||||
'ECal': ECal,
|
'ECal': ECal,
|
||||||
'K_pc_half': K_pc_half,
|
'K_pc_half': K_pc_half,
|
||||||
@ -120,49 +121,50 @@ class Fitter:
|
|||||||
'tau_RC': tau_RC,
|
'tau_RC': tau_RC,
|
||||||
'offset': offset,
|
'offset': offset,
|
||||||
'mean_squared_error': err})
|
'mean_squared_error': err})
|
||||||
|
|
||||||
model = self.model()
|
model = self.model()
|
||||||
|
|
||||||
model.ECaL = ECal
|
model.ECaL = ECal
|
||||||
model.gCaL = gGaL
|
model.gCaL = gGaL
|
||||||
model.K_pc_half = K_pc_half
|
model.K_pc_half = K_pc_half
|
||||||
model.tau_xfer = tau_xfer
|
model.tau_xfer = tau_xfer
|
||||||
|
|
||||||
model.solve(times=self.time_points)
|
model.solve(times=self.time_points)
|
||||||
|
|
||||||
_calc_curr = model.calculated_current()
|
_calc_curr = model.calculated_current()
|
||||||
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC) + offset
|
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC) + offset
|
||||||
print("Elapsed time:", time.time() - t0)
|
print("Elapsed time:", time.time() - t0)
|
||||||
|
|
||||||
fig = plt.figure(figsize=(24, 12))
|
fig = plt.figure(figsize=(24, 12))
|
||||||
ax1 = fig.add_subplot(121)
|
ax1 = fig.add_subplot(121)
|
||||||
ax2 = fig.add_subplot(122)
|
ax2 = fig.add_subplot(122)
|
||||||
ax1.plot(1000 * self.data.current_t, self.data.current, label="Measured")
|
ax1.plot(1000 * self.data.current_t, self.data.current, label="Measured")
|
||||||
ax1.plot(self.time_points, calculated_current, label="Calculated")
|
ax1.plot(self.time_points, calculated_current, label="Calculated")
|
||||||
ax1.set_xlabel("time, ms")
|
ax1.set_xlabel("time, ms")
|
||||||
ax1.set_ylabel("current, pA/pF")
|
ax1.set_ylabel("current, pA/pF")
|
||||||
ax1.legend(frameon=False)
|
ax1.legend(frameon=False)
|
||||||
|
|
||||||
tp = self.time_points[self.current_time_indecies]
|
tp = self.time_points[self.current_time_indecies]
|
||||||
ax2.plot(tp, self.measured_current, label="Measured")
|
ax2.plot(tp, self.measured_current, label="Measured")
|
||||||
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Calculated")
|
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Calculated")
|
||||||
ax2.set_xlabel("time, ms")
|
ax2.set_xlabel("time, ms")
|
||||||
ax2.set_ylabel("current, pA/pF")
|
ax2.set_ylabel("current, pA/pF")
|
||||||
ax2.legend(frameon=False)
|
ax2.legend(frameon=False)
|
||||||
return res, fig
|
|
||||||
|
return res, fig
|
||||||
|
|
||||||
def covcor_from_lsq(res):
|
def covcor_from_lsq(res):
|
||||||
|
|
||||||
_, s, VT = svd(res.jac, full_matrices=False)
|
_, s, VT = svd(res.jac, full_matrices=False)
|
||||||
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
|
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
|
||||||
s = s[s > threshold]
|
s = s[s > threshold]
|
||||||
VT = VT[: s.size]
|
VT = VT[: s.size]
|
||||||
cov = np.dot(VT.T / s**2, VT)
|
cov = np.dot(VT.T / s**2, VT)
|
||||||
|
|
||||||
std = np.sqrt(np.diag(cov))
|
std = np.sqrt(np.diag(cov))
|
||||||
cor = cov / np.outer(std, std)
|
cor = cov / np.outer(std, std)
|
||||||
cor[cov == 0] = 0
|
cor[cov == 0] = 0
|
||||||
|
|
||||||
return cov, cor
|
return cov, cor
|
||||||
|
|
||||||
def plot_correlation_matrix(cor):
|
def plot_correlation_matrix(cor):
|
||||||
@ -173,30 +175,32 @@ class Fitter:
|
|||||||
plt.ylabel('Variables')
|
plt.ylabel('Variables')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
filename = "ltcc_current.h5"
|
filename = "ltcc_current.h5"
|
||||||
eid = "0033635a51b096dc449eb9964e70443a67fc16b9587ae3ff6564eea1fa0e3437_2018.06.18 14:48:40"
|
eid = "0033635a51b096dc449eb9964e70443a67fc16b9587ae3ff6564eea1fa0e3437_2018.06.18 14:48:40"
|
||||||
|
|
||||||
data = Data(filename, eid)
|
data = Data(filename, eid)
|
||||||
|
|
||||||
fit = Fitter(Model, data)
|
fit = Fitter(Model, data)
|
||||||
|
|
||||||
|
res, fig = fit.optimize()
|
||||||
|
|
||||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient='index').T
|
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient='index').T
|
||||||
fit_hist.index.name = 'Iterations'
|
fit_hist.index.name = 'Iterations'
|
||||||
|
|
||||||
res_filename = f"fit_results_{eid}.csv"
|
res_filename = f"fit_results_{eid}.csv"
|
||||||
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
||||||
fit_hist.to_csv(res_filename, index=True)
|
fit_hist.to_csv(res_filename, index=True)
|
||||||
|
|
||||||
eid_cleaned = re.sub(r'[^\w.-]', '', eid) # Eemalda kõik eritähed ja jääb alles alphanumbrilised tähed, sidekriipsud ja punktid
|
eid_cleaned = re.sub(r'[^\w.-]', '', eid) # Eemalda kõik eritähed ja jääb alles alphanumbrilised tähed, sidekriipsud ja punktid
|
||||||
fig.savefig(f"plot_{eid_cleaned}.png")
|
fig.savefig(f"plot_{eid_cleaned}.png")
|
||||||
fig.savefig(f"plot_{eid_cleaned}.pdf")
|
fig.savefig(f"plot_{eid_cleaned}.pdf")
|
||||||
|
|
||||||
# plot_filename = "fit_plot"
|
# plot_filename = "fit_plot"
|
||||||
# fig.savefig(f"{plot_filename}.png")
|
# fig.savefig(f"{plot_filename}.png")
|
||||||
# fig.savefig(f"{plot_filename}.pdf")
|
# fig.savefig(f"{plot_filename}.pdf")
|
||||||
fig.savefig("naidis_fit.pdf")
|
fig.savefig("naidis_fit.pdf")
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user