debugging of fitter, many issues still persist
This commit is contained in:
parent
6e7a727b1a
commit
7cf6590f94
148
fitter.py
148
fitter.py
@ -6,7 +6,8 @@ import re
|
||||
|
||||
|
||||
from scipy.optimize import least_squares
|
||||
from model import Model
|
||||
from scipy.linalg import svd
|
||||
from Model import Model
|
||||
from Data import Data
|
||||
|
||||
|
||||
@ -81,38 +82,38 @@ class Fitter:
|
||||
plt.show()
|
||||
# exit()
|
||||
|
||||
return res # , measured_fluo - calculated_fluo)
|
||||
return res, err # , measured_fluo - calculated_fluo)
|
||||
|
||||
def optimize(self, init_parameters=None):
|
||||
t0 = time.time()
|
||||
self.iteration = 0
|
||||
if init_parameters is None:
|
||||
m = self.model()
|
||||
K_pc_half = m.K_pc_half
|
||||
tau_xfer = m.tau_xfer
|
||||
tau_RC = 1.5
|
||||
offset = 0
|
||||
|
||||
d = self.data
|
||||
init_parameters = np.array([d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset])
|
||||
print(init_parameters.tolist())
|
||||
|
||||
bounds = (
|
||||
(0.01, 10, 0.1, 0.1, 0.1, -5, -10),
|
||||
(10, 100, 100, 1, 100, 10, 10),
|
||||
)
|
||||
|
||||
res = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
||||
print()
|
||||
print(" Parameters: [gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset]")
|
||||
print(" Initial:", init_parameters.tolist())
|
||||
print(" Optimized:", res.x.tolist())
|
||||
print(" Optim status:", res.status)
|
||||
print("Optim message:", res.message)
|
||||
|
||||
gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset = res.x
|
||||
|
||||
self.fit_results.update({
|
||||
def optimize(self, init_parameters=None):
|
||||
t0 = time.time()
|
||||
self.iteration = 0
|
||||
if init_parameters is None:
|
||||
m = self.model()
|
||||
K_pc_half = m.K_pc_half
|
||||
tau_xfer = m.tau_xfer
|
||||
tau_RC = 1.5
|
||||
offset = 0
|
||||
|
||||
d = self.data
|
||||
init_parameters = np.array([d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset])
|
||||
print(init_parameters.tolist())
|
||||
|
||||
bounds = (
|
||||
(0.01, 10, 0.1, 0.1, 0.1, -5, -10),
|
||||
(10, 100, 100, 1, 100, 10, 10),
|
||||
)
|
||||
|
||||
res, err = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
||||
print()
|
||||
print(" Parameters: [gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset]")
|
||||
print(" Initial:", init_parameters.tolist())
|
||||
print(" Optimized:", res.x.tolist())
|
||||
print(" Optim status:", res.status)
|
||||
print("Optim message:", res.message)
|
||||
|
||||
gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset = res.x
|
||||
|
||||
self.fit_results.update({
|
||||
'gGaL': gGaL,
|
||||
'ECal': ECal,
|
||||
'K_pc_half': K_pc_half,
|
||||
@ -120,49 +121,50 @@ class Fitter:
|
||||
'tau_RC': tau_RC,
|
||||
'offset': offset,
|
||||
'mean_squared_error': err})
|
||||
|
||||
model = self.model()
|
||||
|
||||
model.ECaL = ECal
|
||||
model.gCaL = gGaL
|
||||
model.K_pc_half = K_pc_half
|
||||
model.tau_xfer = tau_xfer
|
||||
|
||||
model.solve(times=self.time_points)
|
||||
|
||||
_calc_curr = model.calculated_current()
|
||||
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC) + offset
|
||||
print("Elapsed time:", time.time() - t0)
|
||||
|
||||
fig = plt.figure(figsize=(24, 12))
|
||||
ax1 = fig.add_subplot(121)
|
||||
ax2 = fig.add_subplot(122)
|
||||
ax1.plot(1000 * self.data.current_t, self.data.current, label="Measured")
|
||||
ax1.plot(self.time_points, calculated_current, label="Calculated")
|
||||
ax1.set_xlabel("time, ms")
|
||||
ax1.set_ylabel("current, pA/pF")
|
||||
ax1.legend(frameon=False)
|
||||
|
||||
tp = self.time_points[self.current_time_indecies]
|
||||
ax2.plot(tp, self.measured_current, label="Measured")
|
||||
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Calculated")
|
||||
ax2.set_xlabel("time, ms")
|
||||
ax2.set_ylabel("current, pA/pF")
|
||||
ax2.legend(frameon=False)
|
||||
return res, fig
|
||||
|
||||
model = self.model()
|
||||
|
||||
model.ECaL = ECal
|
||||
model.gCaL = gGaL
|
||||
model.K_pc_half = K_pc_half
|
||||
model.tau_xfer = tau_xfer
|
||||
|
||||
model.solve(times=self.time_points)
|
||||
|
||||
_calc_curr = model.calculated_current()
|
||||
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC) + offset
|
||||
print("Elapsed time:", time.time() - t0)
|
||||
|
||||
fig = plt.figure(figsize=(24, 12))
|
||||
ax1 = fig.add_subplot(121)
|
||||
ax2 = fig.add_subplot(122)
|
||||
ax1.plot(1000 * self.data.current_t, self.data.current, label="Measured")
|
||||
ax1.plot(self.time_points, calculated_current, label="Calculated")
|
||||
ax1.set_xlabel("time, ms")
|
||||
ax1.set_ylabel("current, pA/pF")
|
||||
ax1.legend(frameon=False)
|
||||
|
||||
tp = self.time_points[self.current_time_indecies]
|
||||
ax2.plot(tp, self.measured_current, label="Measured")
|
||||
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Calculated")
|
||||
ax2.set_xlabel("time, ms")
|
||||
ax2.set_ylabel("current, pA/pF")
|
||||
ax2.legend(frameon=False)
|
||||
|
||||
return res, fig
|
||||
|
||||
def covcor_from_lsq(res):
|
||||
|
||||
|
||||
_, s, VT = svd(res.jac, full_matrices=False)
|
||||
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
|
||||
s = s[s > threshold]
|
||||
VT = VT[: s.size]
|
||||
cov = np.dot(VT.T / s**2, VT)
|
||||
|
||||
|
||||
std = np.sqrt(np.diag(cov))
|
||||
cor = cov / np.outer(std, std)
|
||||
cor[cov == 0] = 0
|
||||
|
||||
|
||||
return cov, cor
|
||||
|
||||
def plot_correlation_matrix(cor):
|
||||
@ -173,30 +175,32 @@ class Fitter:
|
||||
plt.ylabel('Variables')
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
filename = "ltcc_current.h5"
|
||||
eid = "0033635a51b096dc449eb9964e70443a67fc16b9587ae3ff6564eea1fa0e3437_2018.06.18 14:48:40"
|
||||
|
||||
data = Data(filename, eid)
|
||||
|
||||
|
||||
fit = Fitter(Model, data)
|
||||
|
||||
|
||||
res, fig = fit.optimize()
|
||||
|
||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient='index').T
|
||||
fit_hist.index.name = 'Iterations'
|
||||
|
||||
|
||||
res_filename = f"fit_results_{eid}.csv"
|
||||
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
||||
fit_hist.to_csv(res_filename, index=True)
|
||||
|
||||
|
||||
eid_cleaned = re.sub(r'[^\w.-]', '', eid) # Eemalda kõik eritähed ja jääb alles alphanumbrilised tähed, sidekriipsud ja punktid
|
||||
fig.savefig(f"plot_{eid_cleaned}.png")
|
||||
fig.savefig(f"plot_{eid_cleaned}.pdf")
|
||||
|
||||
|
||||
# plot_filename = "fit_plot"
|
||||
# fig.savefig(f"{plot_filename}.png")
|
||||
# fig.savefig(f"{plot_filename}.pdf")
|
||||
fig.savefig("naidis_fit.pdf")
|
||||
|
||||
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user