first attempt at multiple_fitting, added things to git ignore, failed 1st attempt
This commit is contained in:
parent
4173284800
commit
e11cc744d9
3
.gitignore
vendored
3
.gitignore
vendored
@ -3,3 +3,6 @@ fit_results_1c5ca4b12ae2ddffc3960c1fe39a3cce35967ce23dbac57c010f450e796d01fd_201
|
||||
plot_1c5ca4b12ae2ddffc3960c1fe39a3cce35967ce23dbac57c010f450e796d01fd_2017.11.27140704.pdf
|
||||
plot_1c5ca4b12ae2ddffc3960c1fe39a3cce35967ce23dbac57c010f450e796d01fd_2017.11.27140704.png
|
||||
naidis_fit.pdf
|
||||
__pycache__/Data.cpython-312.pyc
|
||||
__pycache__/Model.cpython-312.pyc
|
||||
__pycache__/fitter.cpython-312.pyc
|
||||
|
@ -6,6 +6,45 @@ from Model import Model
|
||||
from fitter import Fitter
|
||||
from Data import Data
|
||||
|
||||
file = "ltcc_current.h5"
|
||||
|
||||
|
||||
def print_attrs(name, obj):
|
||||
print(f"\nAttributes for {name}:")
|
||||
for key, val in obj.attrs.items():
|
||||
print(f" {key}: {val}")
|
||||
|
||||
|
||||
with h5py.File(file, "r") as h5_file:
|
||||
h5_file.visititems(print_attrs)
|
||||
|
||||
# Dict to hold DFs 'sex', 'tag' & 'spid'
|
||||
dfs_by_sex_tag_spid = {}
|
||||
|
||||
with h5py.File(file, "r") as h5_file:
|
||||
for eid in h5_file.keys():
|
||||
attributes = h5_file[eid].attrs
|
||||
sex = attributes.get("sex")
|
||||
tag = attributes.get("tag")
|
||||
spid = attributes.get("spid")
|
||||
|
||||
key = f"{sex}_{tag}_{spid}"
|
||||
|
||||
if key not in dfs_by_sex_tag_spid:
|
||||
dfs_by_sex_tag_spid[key] = pd.DataFrame()
|
||||
|
||||
row_data = {"experiment_id": eid, "sex": sex, "tag": tag, "spid": spid}
|
||||
temp_df = pd.DataFrame([row_data])
|
||||
|
||||
dfs_by_sex_tag_spid[key] = pd.concat(
|
||||
[dfs_by_sex_tag_spid[key], temp_df], ignore_index=True
|
||||
)
|
||||
|
||||
for key, df in dfs_by_sex_tag_spid.items():
|
||||
print(f"DataFrame for {key}:")
|
||||
print(df)
|
||||
print()
|
||||
|
||||
|
||||
def fit_data():
|
||||
filename = "ltcc_current.h5"
|
||||
|
124
multiple_experiment_fitter.py
Normal file
124
multiple_experiment_fitter.py
Normal file
@ -0,0 +1,124 @@
|
||||
import h5py
|
||||
import pandas as pd
|
||||
import re
|
||||
|
||||
import matplotlib as plt
|
||||
|
||||
from Model import Model
|
||||
from fitter import Fitter
|
||||
from Data import Data
|
||||
|
||||
file = "ltcc_current.h5"
|
||||
|
||||
|
||||
def print_attrs(name, obj):
|
||||
# print(f"\nAttributes for {name}:")
|
||||
# for key, val in obj.attrs.items():
|
||||
# print(f" {key}: {val}")
|
||||
pass
|
||||
|
||||
|
||||
with h5py.File(file, "r") as h5_file:
|
||||
h5_file.visititems(print_attrs)
|
||||
|
||||
|
||||
dfs_by_sex_tag_spid = {}
|
||||
|
||||
with h5py.File(file, "r") as h5_file:
|
||||
for eid in h5_file.keys():
|
||||
attributes = h5_file[eid].attrs
|
||||
sex = attributes.get("sex")
|
||||
tag = attributes.get("tag")
|
||||
spid = attributes.get("spid")
|
||||
|
||||
key = f"{sex}_{tag}_{spid}"
|
||||
|
||||
if key not in dfs_by_sex_tag_spid:
|
||||
dfs_by_sex_tag_spid[key] = pd.DataFrame()
|
||||
|
||||
row_data = {"experiment_id": eid, "sex": sex, "tag": tag, "spid": spid}
|
||||
temp_df = pd.DataFrame([row_data])
|
||||
|
||||
dfs_by_sex_tag_spid[key] = pd.concat(
|
||||
[dfs_by_sex_tag_spid[key], temp_df], ignore_index=True
|
||||
)
|
||||
|
||||
# for key, df in dfs_by_sex_tag_spid.items():
|
||||
# print(f"DataFrame for {key}:")
|
||||
# print(df)
|
||||
# print()
|
||||
|
||||
|
||||
def fit_and_plot_dataframes(dfs_by_sex_tag_spid):
|
||||
for key, df in dfs_by_sex_tag_spid.items():
|
||||
print(f"Fitting and plotting data for {key}...")
|
||||
|
||||
combined_data = []
|
||||
|
||||
for eid in df["experiment_id"].tolist():
|
||||
data = Data(file, group_key=eid)
|
||||
combined_data.append(data)
|
||||
|
||||
collective_data = Data.combine(combined_data)
|
||||
|
||||
fit = Fitter(Model, collective_data)
|
||||
fit.optimize()
|
||||
res, fig = fit.optimize()
|
||||
|
||||
plt.figure()
|
||||
plt.title(f"Fit results for {key}")
|
||||
|
||||
for single_data in combined_data:
|
||||
plt.plot(single_data.x, single_data.y,
|
||||
label=f"Experiment {single_data.eid}")
|
||||
|
||||
plt.plot(collective_data.x, collective_data.y, 'k-',
|
||||
label="Combined Fit")
|
||||
plt.legend()
|
||||
plt.xlabel("X")
|
||||
plt.ylabel("Y")
|
||||
|
||||
key_cleaned = re.sub(r"[^\w.-]", "", key)
|
||||
plt.savefig(f"combined_plot_{key_cleaned}.png")
|
||||
plt.savefig(f"combined_plot_{key_cleaned}.pdf")
|
||||
plt.close()
|
||||
|
||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient="index").T
|
||||
fit_hist.index.name = "Iterations"
|
||||
|
||||
res_filename = f"combined_fit_results_{key}.csv"
|
||||
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
||||
fit_hist.to_csv(res_filename, index=True)
|
||||
|
||||
print(f"Finished fitting for {key}. Results saved.")
|
||||
|
||||
|
||||
fit_and_plot_dataframes(dfs_by_sex_tag_spid)
|
||||
|
||||
"""
|
||||
def fit_data():
|
||||
filename = "ltcc_current.h5"
|
||||
with h5py.File(filename, "r") as h5:
|
||||
eids = list(h5.keys())
|
||||
|
||||
for eid in eids:
|
||||
data = Data(filename, group_key=eid)
|
||||
fit = Fitter(Model, data)
|
||||
fit.optimize()
|
||||
res, fig = fit.optimize()
|
||||
|
||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient="index").T
|
||||
fit_hist.index.name = "Iterations"
|
||||
|
||||
res_filename = f"fit_results_{eid}.csv"
|
||||
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
||||
fit_hist.to_csv(res_filename, index=True)
|
||||
|
||||
eid_cleaned = re.sub(r"[^w.-]", "", eid) # Eemaldab kõik eritähed
|
||||
fig.savefig(f"plot_{eid_cleaned}.png")
|
||||
fig.savefig(f"plot_{eid_cleaned}.pdf")
|
||||
|
||||
|
||||
fit_data()
|
||||
|
||||
"""
|
Loading…
Reference in New Issue
Block a user