cleared up more errors
This commit is contained in:
parent
7cf6590f94
commit
eb32120675
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
ltcc_current.h5
|
43
Model.py
43
Model.py
@ -1,18 +1,13 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.integrate import ode
|
||||
|
||||
# %% Constants
|
||||
|
||||
R = 8.314 # ideal gas constant (J/(mol*K))
|
||||
F = 96.485 # coulomb_per_millimole, Faraday constant
|
||||
T = 298 # room temperature (K)
|
||||
RT = R * T
|
||||
|
||||
|
||||
# %% model
|
||||
class Model:
|
||||
def __init__(self):
|
||||
|
||||
@ -20,48 +15,64 @@ class Model:
|
||||
self.C_mem = 1.0 # uF/cm2 Specific membrane capacitance
|
||||
self.V_myo = 25.84e-6 # uL, Myoplasmic volume
|
||||
self.current2flux = self.A_cap * self.C_mem / 2 / F #
|
||||
|
||||
self.period = 1000 # ms, pulse period
|
||||
self.V_mem_rest = -80.0 # mV, resting membrane potential
|
||||
|
||||
self.Nai = 11000 # uM, Myoplasmic Na+ concentration
|
||||
self.Nao = 150000 # uM, Extracellular Na+ concentration
|
||||
|
||||
self.eta = 0.35 # Controls voltage dependance of Na/Ca2+ exchange
|
||||
|
||||
self.km_Na = 87500 # uM, Na+ half-saturation constant for Na+/Ca2+ exchange
|
||||
self.k_sat = (
|
||||
0.1 # Na+/Ca2+ exchange saturation factor at very negative potentials
|
||||
)
|
||||
self.km_Ca = (1380,) # uM, Ca2+ half-saturation constant for Na+/Ca2+ exchange
|
||||
self.k_Na_Ca = 292.8 # pA/pF, Scaling factor of Na2+/Ca2+ exchange
|
||||
|
||||
self.I_max_pCa = 1.0 # pA/pF, Maximum Ca2+ pump current
|
||||
|
||||
# self.Cai = 0.1 # uM, Cytoplasmic Ca2+ concentration fixed at this point
|
||||
|
||||
self.LTRPN_tot = (
|
||||
70.0 # uM, Total myoplasmic troponin low-affinity site concentration
|
||||
)
|
||||
self.HTRPN_tot = (
|
||||
140.0 # uM, Total myoplasmic troponin high-affinity site concentration
|
||||
)
|
||||
|
||||
# self.LTRPNCa = 11.2684 # uM, Concentration Ca2+ bound low-affinity troponin-binding sites
|
||||
# self.HTRPNCa = 125.290 # uM, Concentration Ca2+ bound high-affinity troponin-binding sites
|
||||
|
||||
self.k_htrpn_positive = (
|
||||
0.00237 # uM^(-1)/ms, Ca2+ on rate const. for troponin high-affinity sites
|
||||
)
|
||||
self.k_htrpn_negative = (
|
||||
3.2e-5 # ms, Ca2+ off rate const. for troponin high-affinity sites
|
||||
)
|
||||
|
||||
self.k_ltrpn_positive = (
|
||||
0.0327 # uM^(-1)/ms, Ca2+ on rate const. for troponin low-affinity sites
|
||||
)
|
||||
self.k_ltrpn_negative = (
|
||||
0.0196 # ms, Ca2+ off rate const. for troponin low-affinity sites
|
||||
)
|
||||
|
||||
self.CMDN_tot = 50 # uM, Total myoplasmic calmodulin concentration
|
||||
self.Km_CMDN = 0.238 # uM, Ca2 half-saturation constant for calmodulin
|
||||
|
||||
self.nu_1 = 4.5 # 1/ms, Maximum RyR channel Ca2+ permeability Ca2+ leak rate constant from the NSR
|
||||
self.nu_2 = 1.74e-5 # ms^(-1), Ca2+ leak rate const. from the NSR
|
||||
self.nu_3 = 0.45 # uM/ms, SR Ca2+ -ATPase maximum pupmp rate
|
||||
|
||||
self.Km_up = 0.5 # uM, Half-saturation constant for SR Ca2+ -ATPase pump
|
||||
self.km_p_ca = 0.5 # uM, Ca2+ half-saturation constant for Ca2+ pump current
|
||||
|
||||
# self.Ca_NSR = 1299.50 # uM,NSR Ca2+ concentration
|
||||
|
||||
self.tau_xfer = 8.0 # ms, Time constant for transfer from subspace to myoplasm
|
||||
|
||||
self.K_pc_max = (
|
||||
0.23324 # 1/ms, Maximum time constant for Ca2+-induced inactivation
|
||||
)
|
||||
@ -70,29 +81,37 @@ class Model:
|
||||
)
|
||||
self.Kpcb = 0.0005 # 1/ms, Voltage-insensitive rate constant for inactivation
|
||||
self.km_Ca = 1380 # uM, Ca2+ half-saturation constant for Na+/Ca2+ exchange
|
||||
|
||||
self.Gcab = 0.000367 # mS/uF
|
||||
|
||||
self.Cao = 1130.0 # uM, Ca2+ outside the cell
|
||||
self.gCaL = (
|
||||
0.1729 # mS/uF, Specific maximum conductivity for L-type Ca2+ channel
|
||||
)
|
||||
self.ECaL = 43.0 # mV, Reversal potential for L-type Ca2⫹ channel, kas arvutame voi jaab const?
|
||||
self.V_ss = 1.485e-9 # uL, Dyadic aka subspace volume
|
||||
|
||||
# self.Ca_JSR = 1299.50 # uM, JSR Ca2+ concentration
|
||||
self.F_tot = 25 # uM, total concentration of Fluo-4
|
||||
self.k_on = 0.1 # 1/uM * 1/ms, Fluo-4 reaction rate constant
|
||||
self.k_off = 0.11 # 1/ms, Fluo-4 reaction rate constant 2
|
||||
|
||||
self.V_NSR = 2.098e-6 # ul, Network SR volume
|
||||
self.tau_tr = 20 # ms, Time const for transfer from NSR to JSR
|
||||
|
||||
self.CSQN_tot = 15000.0 # uM, total junctional SR calsequestrin concentration
|
||||
self.Km_CSQN = 800.0 # uM, Ca2 half-saturation constant for calsequestrin
|
||||
|
||||
self.k_a_positive = 0.006075 # uM^(-4)/ms, RyR Pc1 - Po1 rate constant
|
||||
self.k_a_negative = 0.07125 # 1/ms, RyR Po1 - Pc1 rate constant
|
||||
self.k_b_positive = 0.00405 # uM^(-3)/ms, RyR Po1 - Po2 rate constant
|
||||
self.k_b_negative = 0.965 # 1/ms, RyR Po2 - Po1 rate constant
|
||||
self.k_c_positive = 0.009 # 1/ms, RyR Po1 - Pc2 rate constant
|
||||
self.k_c_negative = 0.0008 # 1/ms, RyR Pc2 - Po1 rate constant
|
||||
|
||||
self.n_ryr = 4 # RyR Ca2+ cooperativity parameter Pc1 - Po1
|
||||
self.m_ryr = 3 # RyR Ca2+ cooperativity parameter Po1 - Po2
|
||||
|
||||
self.I_CaL_max = 7.0 # pA/pF, normalization constant for L-type Ca2+ current
|
||||
self.V_JSR = 0.12e-6 # ul, Junctional SR volume
|
||||
|
||||
@ -180,11 +199,11 @@ class Model:
|
||||
|
||||
Bi = 1 / (
|
||||
1 + (self.CMDN_tot * self.Km_CMDN) / (self.Km_CMDN + Cai) ** 2
|
||||
) # A6 !!!!!!! korras V8
|
||||
)
|
||||
|
||||
Bss = 1 / (
|
||||
1 + (self.CMDN_tot * self.Km_CMDN) / (self.Km_CMDN + Cass) ** 2
|
||||
) # A7 !!!!!!!!! korras V8
|
||||
)
|
||||
|
||||
J_xfer = (Cass - Cai) / self.tau_xfer
|
||||
|
||||
@ -199,7 +218,7 @@ class Model:
|
||||
- self.k_htrpn_negative * HTRPNCa
|
||||
+ self.k_ltrpn_positive
|
||||
* Cai
|
||||
* (self.LTRPN_tot - LTRPNCa) # !!!!!! korras v8
|
||||
* (self.LTRPN_tot - LTRPNCa)
|
||||
- self.k_ltrpn_negative * LTRPNCa
|
||||
)
|
||||
|
||||
@ -207,7 +226,7 @@ class Model:
|
||||
|
||||
J_tr = (Ca_NSR - Ca_JSR) / self.tau_tr
|
||||
|
||||
J_leak = self.nu_2 * (Ca_NSR - Cai) # puudu CaNSR diff vorrand
|
||||
J_leak = self.nu_2 * (Ca_NSR - Cai)
|
||||
|
||||
dCa_NSRdt = (J_up - J_leak) * (self.V_myo / self.V_NSR)
|
||||
-J_tr * (self.V_JSR / self.V_NSR)
|
||||
@ -239,7 +258,9 @@ class Model:
|
||||
|
||||
P_C1 = 1 - (P_C2 + P_O1 + P_O2)
|
||||
|
||||
dP_O1dt = self.k_a_positive * (Cass) ** self.n_ryr * P_C1
|
||||
dP_O1dt = (
|
||||
self.k_a_positive * (Cass) ** self.n_ryr * P_C1
|
||||
)
|
||||
-self.k_a_negative * P_O1 - self.k_a_positive * (Cass) ** self.m_ryr * P_O1
|
||||
+self.k_b_negative * P_O2 - self.k_c_positive * P_O1 + self.k_c_negative * P_C2
|
||||
|
||||
@ -265,7 +286,7 @@ class Model:
|
||||
- (I_Cab - 2 * I_NaCa + I_pCa) * ((self.A_cap * self.C_mem)/(2 * self.V_myo * F)))
|
||||
"""
|
||||
|
||||
# J_rel_caf = self.nu_1 * (self.Ca_JSR - Cass)
|
||||
# J_rel_caf = self.nu_1 * (self.Ca_JSR - Cass) #lisatud ette ennetavalt
|
||||
|
||||
JFCa = self.k_on * (self.F_tot - FCa) * Cai - self.k_off * FCa
|
||||
|
||||
|
95
fitter.py
95
fitter.py
@ -4,18 +4,19 @@ import pylab as plt
|
||||
import pandas as pd
|
||||
import re
|
||||
|
||||
|
||||
from scipy.optimize import least_squares
|
||||
from scipy.linalg import svd
|
||||
from Model import Model
|
||||
from Data import Data
|
||||
|
||||
|
||||
class Fitter:
|
||||
def __init__(self, model: Model, data: Data, current_fit_range: tuple = (107, 341)) -> None:
|
||||
def __init__(
|
||||
self, model: Model, data: Data, current_fit_range: tuple = (107, 341)
|
||||
) -> None:
|
||||
"""
|
||||
current_fit_range : tuple (t0, t1), t0 nad t1 are start and stop times in between current is fitted
|
||||
"""
|
||||
|
||||
self.model = model
|
||||
self.data = data
|
||||
self.current_fit_range = current_fit_range
|
||||
@ -60,19 +61,21 @@ class Fitter:
|
||||
model.solve(times=self.time_points)
|
||||
|
||||
_calc_curr = model.calculated_current()
|
||||
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC)[self.current_time_indecies] + offset
|
||||
calculated_current = (
|
||||
self.convolve_current(_calc_curr, tau=tau_RC)[self.current_time_indecies]
|
||||
+ offset
|
||||
)
|
||||
|
||||
res = self.measured_current - calculated_current
|
||||
err = np.mean(res**2) # mean squared error
|
||||
self.iteration += 1
|
||||
print(self.iteration, parameters.tolist(), "err", err)
|
||||
# measured_fluo = self.data.fluo
|
||||
# fluo_interplolator = interp1d(self.time_domain, model.calculated_fluo)
|
||||
# calculated_fluo = fluo_interplolator(self.data.fluo_time)
|
||||
|
||||
if self.iteration < -0:
|
||||
t = self.time_points[self.current_time_indecies]
|
||||
plt.plot(t, _calc_curr[self.current_time_indecies], label="calculated current")
|
||||
plt.plot(
|
||||
t, _calc_curr[self.current_time_indecies], label="calculated current"
|
||||
)
|
||||
plt.plot(t, self.measured_current, label="measured current")
|
||||
plt.plot(t, calculated_current, label="conv calculated current")
|
||||
plt.plot(t, self.measured_current - calculated_current, label="error")
|
||||
@ -80,9 +83,8 @@ class Fitter:
|
||||
plt.ylabel("current, pA/pF")
|
||||
plt.legend(frameon=False)
|
||||
plt.show()
|
||||
# exit()
|
||||
|
||||
return res, err # , measured_fluo - calculated_fluo)
|
||||
return res # , measured_fluo - calculated_fluo)
|
||||
|
||||
def optimize(self, init_parameters=None):
|
||||
t0 = time.time()
|
||||
@ -95,15 +97,17 @@ class Fitter:
|
||||
offset = 0
|
||||
|
||||
d = self.data
|
||||
init_parameters = np.array([d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset])
|
||||
init_parameters = np.array(
|
||||
[d.gGaL, d.ECal, K_pc_half, tau_xfer, tau_RC, offset]
|
||||
)
|
||||
print(init_parameters.tolist())
|
||||
|
||||
bounds = (
|
||||
(0.01, 10, 0.1, 0.1, 0.1, -5, -10),
|
||||
(10, 100, 100, 1, 100, 10, 10),
|
||||
(0.01, 10, 0.1, 0.1, -5, -10),
|
||||
(10, 100, 100, 100, 10, 10),
|
||||
)
|
||||
|
||||
res, err = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
||||
res = least_squares(self.cost_func, init_parameters, bounds=bounds, xtol=1e-10)
|
||||
print()
|
||||
print(" Parameters: [gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset]")
|
||||
print(" Initial:", init_parameters.tolist())
|
||||
@ -113,14 +117,19 @@ class Fitter:
|
||||
|
||||
gGaL, ECal, K_pc_half, tau_xfer, tau_RC, offset = res.x
|
||||
|
||||
self.fit_results.update({
|
||||
'gGaL': gGaL,
|
||||
'ECal': ECal,
|
||||
'K_pc_half': K_pc_half,
|
||||
'tau_xfer': tau_xfer,
|
||||
'tau_RC': tau_RC,
|
||||
'offset': offset,
|
||||
'mean_squared_error': err})
|
||||
err = self.cost_func(res.x)
|
||||
|
||||
self.fit_results.update(
|
||||
{
|
||||
"gGaL": gGaL,
|
||||
"ECal": ECal,
|
||||
"K_pc_half": K_pc_half,
|
||||
"tau_xfer": tau_xfer,
|
||||
"tau_RC": tau_RC,
|
||||
"offset": offset,
|
||||
"mean_squared_error": np.mean((err) ** 2),
|
||||
}
|
||||
)
|
||||
|
||||
model = self.model()
|
||||
|
||||
@ -135,27 +144,26 @@ class Fitter:
|
||||
calculated_current = self.convolve_current(_calc_curr, tau=tau_RC) + offset
|
||||
print("Elapsed time:", time.time() - t0)
|
||||
|
||||
fig = plt.figure(figsize=(24, 12))
|
||||
fig = plt.figure(figsize=(6, 3))
|
||||
ax1 = fig.add_subplot(121)
|
||||
ax2 = fig.add_subplot(122)
|
||||
ax1.plot(1000 * self.data.current_t, self.data.current, label="Measured")
|
||||
ax1.plot(self.time_points, calculated_current, label="Calculated")
|
||||
ax1.set_xlabel("time, ms")
|
||||
ax1.set_ylabel("current, pA/pF")
|
||||
ax1.plot(1000 * self.data.current_t, self.data.current, label="Mõõdetud")
|
||||
ax1.plot(self.time_points, calculated_current, label="Arvutatud")
|
||||
ax1.set_xlabel("Aeg [ms]")
|
||||
ax1.set_ylabel("Vool [pA/pF]")
|
||||
ax1.legend(frameon=False)
|
||||
|
||||
tp = self.time_points[self.current_time_indecies]
|
||||
ax2.plot(tp, self.measured_current, label="Measured")
|
||||
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Calculated")
|
||||
ax2.set_xlabel("time, ms")
|
||||
ax2.set_ylabel("current, pA/pF")
|
||||
ax2.plot(tp, self.measured_current, label="Mõõdetud")
|
||||
ax2.plot(tp, calculated_current[self.current_time_indecies], label="Arvutatud")
|
||||
ax2.set_xlabel("Aeg [ms]")
|
||||
ax2.set_ylabel("Vool [pA/pF]")
|
||||
ax2.legend(frameon=False)
|
||||
|
||||
return res, fig
|
||||
|
||||
def covcor_from_lsq(res):
|
||||
|
||||
_, s, VT = svd(res.jac, full_matrices=False)
|
||||
_, s, VT = np.linalg.svd(res.jac, full_matrices=False)
|
||||
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
|
||||
s = s[s > threshold]
|
||||
VT = VT[: s.size]
|
||||
@ -168,18 +176,18 @@ class Fitter:
|
||||
return cov, cor
|
||||
|
||||
def plot_correlation_matrix(cor):
|
||||
plt.imshow(cor, cmap='viridis', interpolation='nearest')
|
||||
plt.colorbar(label='Correlation')
|
||||
plt.title('Correlation Matrix')
|
||||
plt.xlabel('Variables')
|
||||
plt.ylabel('Variables')
|
||||
plt.imshow(cor, cmap="viridis", interpolation="nearest")
|
||||
plt.colorbar(label="Correlation")
|
||||
plt.title("Correlation Matrix")
|
||||
plt.xlabel("Variables")
|
||||
plt.ylabel("Variables")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
filename = "ltcc_current.h5"
|
||||
eid = "0033635a51b096dc449eb9964e70443a67fc16b9587ae3ff6564eea1fa0e3437_2018.06.18 14:48:40"
|
||||
eid = "1c5ca4b12ae2ddffc3960c1fe39a3cce35967ce23dbac57c010f450e796d01fd_2017.11.27 14:07:04"
|
||||
|
||||
data = Data(filename, eid)
|
||||
|
||||
@ -187,14 +195,16 @@ if __name__ == "__main__":
|
||||
|
||||
res, fig = fit.optimize()
|
||||
|
||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient='index').T
|
||||
fit_hist.index.name = 'Iterations'
|
||||
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient="index").T
|
||||
fit_hist.index.name = "Iterations"
|
||||
|
||||
res_filename = f"fit_results_{eid}.csv"
|
||||
res_filename = res_filename.replace(" ", "_").replace(":", "-")
|
||||
fit_hist.to_csv(res_filename, index=True)
|
||||
|
||||
eid_cleaned = re.sub(r'[^\w.-]', '', eid) # Eemalda kõik eritähed ja jääb alles alphanumbrilised tähed, sidekriipsud ja punktid
|
||||
eid_cleaned = re.sub(
|
||||
r"[^\w.-]", "", eid
|
||||
) # Eemalda kõik eritähed ja jääb alles alphanumbrilised tähed, sidekriipsud ja punktid
|
||||
fig.savefig(f"plot_{eid_cleaned}.png")
|
||||
fig.savefig(f"plot_{eid_cleaned}.pdf")
|
||||
|
||||
@ -202,5 +212,4 @@ if __name__ == "__main__":
|
||||
# fig.savefig(f"{plot_filename}.png")
|
||||
# fig.savefig(f"{plot_filename}.pdf")
|
||||
fig.savefig("naidis_fit.pdf")
|
||||
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user