import h5py import pandas as pd import re from Model import Model from fitter import Fitter from Data import Data file = "ltcc_current.h5" def print_attrs(name, obj): print(f"\nAttributes for {name}:") for key, val in obj.attrs.items(): print(f" {key}: {val}") with h5py.File(file, "r") as h5_file: h5_file.visititems(print_attrs) # Dict to hold DFs 'sex', 'tag' & 'spid' dfs_by_sex_tag_spid = {} with h5py.File(file, "r") as h5_file: for eid in h5_file.keys(): attributes = h5_file[eid].attrs sex = attributes.get("sex") tag = attributes.get("tag") spid = attributes.get("spid") key = f"{sex}_{tag}_{spid}" if key not in dfs_by_sex_tag_spid: dfs_by_sex_tag_spid[key] = pd.DataFrame() row_data = {"experiment_id": eid, "sex": sex, "tag": tag, "spid": spid} temp_df = pd.DataFrame([row_data]) dfs_by_sex_tag_spid[key] = pd.concat( [dfs_by_sex_tag_spid[key], temp_df], ignore_index=True ) for key, df in dfs_by_sex_tag_spid.items(): print(f"DataFrame for {key}:") print(df) print() def fit_data(): filename = "ltcc_current.h5" with h5py.File(filename, "r") as h5: eids = list(h5.keys()) for eid in eids: data = Data(filename, group_key=eid) fit = Fitter(Model, data) fit.optimize() res, fig = fit.optimize() fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient="index").T fit_hist.index.name = "Iterations" res_filename = f"fit_results_{eid}.csv" res_filename = res_filename.replace(" ", "_").replace(":", "-") fit_hist.to_csv(res_filename, index=True) eid_cleaned = re.sub( r"[^\w.-]", "", eid ) # Eemaldab kõik eritähed fig.savefig(f"plot_{eid_cleaned}.png") fig.savefig(f"plot_{eid_cleaned}.pdf") fit_data()