import h5py import os import pandas as pd h5_file = 'ltcc_current.h5' sobiv_eid_list = [] ttx_eid_list = [] teised_eid_list = [] with h5py.File(h5_file, 'r') as h5_file: for eid in h5_file.keys(): if 'tag' in h5_file[eid].attrs: tag_val = h5_file[eid].attrs['tag'] if isinstance(tag_val, bytes): tag_val = tag_val.decode('utf-8') puhas_eid = eid.replace(" ", "_").replace(":", "-") fit_result_eid = "fit_results_" + puhas_eid if tag_val == 'iso': sobiv_eid_list.append(fit_result_eid) elif tag_val == 'ttx': ttx_eid_list.append(fit_result_eid) else: teised_eid_list.append(fit_result_eid) file = 'ltcc_current.h5' with h5py.File(file, 'r') as h5_file: for eid in h5_file.keys(): puhastatud_eid = eid.replace(" ", "_").replace(":", "-") atribuudid = h5_file[eid].attrs sex = atribuudid.get('sex') spid = atribuudid.get('spid') csv_file_name = f"fit_results_{puhastatud_eid}.csv" if os.path.exists(csv_file_name): df = pd.read_csv(csv_file_name) df['sex'] = sex df['spid'] = spid.replace("Mouse AGAT", "") df['eid'] = eid df.to_csv(csv_file_name, index=False) for fail in os.listdir(): if fail.endswith('.csv'): eksperiment_id = fail.replace(".csv", "") if eksperiment_id in sobiv_eid_list: df = pd.read_csv(fail) df['tag'] = 'iso' df.to_csv(fail, index=False) elif eksperiment_id in ttx_eid_list: df = pd.read_csv(fail) df['tag'] = 'ttx' df.to_csv(fail, index=False) else: df = pd.read_csv(fail) df['tag'] = 'teised' df.to_csv(fail, index=False) comb_df = pd.DataFrame() for filename in os.listdir(): if filename.endswith('.csv'): df = pd.read_csv(filename) if 'tag' in df.columns and df['tag'].isin(['iso', 'ttx']).all(): comb_df = pd.concat([comb_df, df], ignore_index=True) print(comb_df)