# -*- coding: utf-8 -*- #%% import import h5py import os import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols from scipy.stats import f from scipy.stats import shapiro h5_file = 'ltcc_current.h5' sobiv_eid_list = [] ttx_eid_list = [] teised_eid_list = [] with h5py.File(h5_file, 'r') as h5_file: for eid in h5_file.keys(): if 'tag' in h5_file[eid].attrs: tag_val = h5_file[eid].attrs['tag'] # pean tõdema, et siin aitas chatgpt oma soovitusega :/ vaga halb debug oli if isinstance(tag_val, bytes): tag_val = tag_val.decode('utf-8') puhas_eid = eid.replace(" ", "_").replace(":", "-") fit_result_eid = "fit_results_" + puhas_eid if tag_val == 'iso': sobiv_eid_list.append(fit_result_eid) elif tag_val == 'ttx': ttx_eid_list.append(fit_result_eid) else: teised_eid_list.append(fit_result_eid) #for attr_key, attr_value in h5_file[eid].attrs.items(): #print(f"Atribute: {attr_key}, Value: {attr_value}") #%% file = 'ltcc_current.h5' with h5py.File(file, 'r') as h5_file: for eid in h5_file.keys(): puhastatud_eid = eid.replace(" ", "_").replace(":", "-") atribuudid = h5_file[eid].attrs sex = atribuudid.get('sex') spid = atribuudid.get('spid') csv_file_name = f"fit_results_{puhastatud_eid}.csv" if os.path.exists(csv_file_name): df = pd.read_csv(csv_file_name) df['sex'] = sex df['spid'] = spid.replace("Mouse AGAT","") df['eid'] = eid df.to_csv(csv_file_name, index=False) for fail in os.listdir(): if fail.endswith('.csv'): eksperiment_id = fail.replace(".csv", "") if eksperiment_id in sobiv_eid_list: df = pd.read_csv(fail) df['tag'] = 'iso' df.to_csv(fail, index=False) elif eksperiment_id in ttx_eid_list: df = pd.read_csv(fail) df['tag'] = 'ttx' df.to_csv(fail, index=False) else: df = pd.read_csv(fail) df['tag'] = 'teised' df.to_csv(fail, index=False) #%% comb_df = pd.DataFrame() for filename in os.listdir(): if filename.endswith('.csv'): df = pd.read_csv(filename) if 'tag' in df.columns and df['tag'].isin(['iso', 'ttx']).all(): comb_df = pd.concat([comb_df, df], ignore_index=True) print(comb_df) #%% lugemine, et teha kindlaks mis tüüpi ANOVA teha kasutades statsmodels packetit, sex_counts = comb_df['sex'].value_counts() spid_counts = comb_df['spid'].value_counts() tag_counts = comb_df['tag'].value_counts() print(sex_counts,spid_counts,tag_counts) #%% normaalsuse kontroll tau_xfer = comb_df['tau_xfer'] stat, p = shapiro(tau_xfer) alpha = 0.05 if p > alpha: print("Andmed on normaalselt jaotunud (ei lükka tagasi nullhüpoteesi)") else: print("Andmed ei ole normaalselt jaotunud (lükata tagasi nullhüpotees)") #%% ANOVA 2 WAY comb_df['spid'] = comb_df['spid'].astype('category') comb_df['sex'] = comb_df['sex'].astype('category') comb_df['tag'] = comb_df['tag'].astype('category') model = ols('tau_xfer ~ C(sex) + C(spid)+ C(tag)', data=comb_df).fit() anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table) #%% kriitiline vaartus df_between_groups = 2 # Vabadusastmed gruppide vahel df_within_groups = 67 # Vabadusastmed rühmades (Residual) alpha = 0.05 critical_f = f.ppf(1 - alpha, df_between_groups, df_within_groups) print("Kriitiline F-väärtus:", critical_f) #%% kriitiline vaartus df_between_groups = 2 # Vabadusastmed gruppide vahel (sex ja spid) df_within_groups = 36 # Vabadusastmed rühmades (Residual) alpha = 0.05 critical_f = f.ppf(1 - alpha, df_between_groups, df_within_groups) print("Kriitiline F-väärtus:", critical_f) """ #%%grupeeringud groups = comb_df.groupby('tag') iso_group = groups.get_group('iso') ttx_group = groups.get_group('ttx') print("ISO grupp:", iso_group) print("nTTX grupp:", ttx_group) #%% ANOVA jaoks on grupid piisavalt suured, #allikas https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/anova/how-to/one-way-anova/before-you-start/data-considerations/ f_statistic, p_value = f_oneway(iso_group['tau_xfer'], ttx_group['tau_xfer']) #%% f_crit control dfn = 2-1 #2 gruppi, miinus 1, hetkel ei lahendanud seda vaga automatiseeritult dfd = len(iso_group) + len(ttx_group) - 2 #ka ei lahendanud automatiseeritult alpha = 0.05 f_crit = f.ppf(1 - alpha, dfn, dfd) #%% Väljastame tulemused print("F-statistika:", f_statistic) print("P-väärtus:", p_value) print("F-kriitiline:", f_crit) """