Calcium_Model/experiment_fitter.py

75 lines
1.9 KiB
Python

import h5py
import pandas as pd
import re
from Model import Model
from fitter import Fitter
from Data import Data
file = "ltcc_current.h5"
def print_attrs(name, obj):
print(f"\nAttributes for {name}:")
for key, val in obj.attrs.items():
print(f" {key}: {val}")
with h5py.File(file, "r") as h5_file:
h5_file.visititems(print_attrs)
# Dict to hold DFs 'sex', 'tag' & 'spid'
dfs_by_sex_tag_spid = {}
with h5py.File(file, "r") as h5_file:
for eid in h5_file.keys():
attributes = h5_file[eid].attrs
sex = attributes.get("sex")
tag = attributes.get("tag")
spid = attributes.get("spid")
key = f"{sex}_{tag}_{spid}"
if key not in dfs_by_sex_tag_spid:
dfs_by_sex_tag_spid[key] = pd.DataFrame()
row_data = {"experiment_id": eid, "sex": sex, "tag": tag, "spid": spid}
temp_df = pd.DataFrame([row_data])
dfs_by_sex_tag_spid[key] = pd.concat(
[dfs_by_sex_tag_spid[key], temp_df], ignore_index=True
)
for key, df in dfs_by_sex_tag_spid.items():
print(f"DataFrame for {key}:")
print(df)
print()
def fit_data():
filename = "ltcc_current.h5"
with h5py.File(filename, "r") as h5:
eids = list(h5.keys())
for eid in eids:
data = Data(filename, group_key=eid)
fit = Fitter(Model, data)
fit.optimize()
res, fig = fit.optimize()
fit_hist = pd.DataFrame.from_dict(fit.fit_results, orient="index").T
fit_hist.index.name = "Iterations"
res_filename = f"fit_results_{eid}.csv"
res_filename = res_filename.replace(" ", "_").replace(":", "-")
fit_hist.to_csv(res_filename, index=True)
eid_cleaned = re.sub(
r"[^\w.-]", "", eid
) # Eemaldab kõik eritähed
fig.savefig(f"plot_{eid_cleaned}.png")
fig.savefig(f"plot_{eid_cleaned}.pdf")
fit_data()