Adding standalone training script and update
This commit is contained in:
@@ -18,8 +18,8 @@ from src.utils.image import Image
|
||||
|
||||
|
||||
def test_float32_3ch_conversion():
|
||||
"""Test conversion of 16-bit TIFF to float32 3-channel TIFF."""
|
||||
print("\n=== Testing Float32 3-Channel Conversion ===")
|
||||
"""Test conversion of 16-bit TIFF to 16-bit RGB PNG."""
|
||||
print("\n=== Testing 16-bit RGB PNG Conversion ===")
|
||||
|
||||
# Create temporary directory structure
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
@@ -42,39 +42,65 @@ def test_float32_3ch_conversion():
|
||||
print(f" Dtype: {test_data.dtype}")
|
||||
print(f" Range: [{test_data.min()}, {test_data.max()}]")
|
||||
|
||||
# Simulate the conversion process
|
||||
print("\nConverting to float32 3-channel...")
|
||||
# Simulate the conversion process (matching training_tab.py)
|
||||
print("\nConverting to 16-bit RGB PNG using PIL merge...")
|
||||
img_obj = Image(test_file)
|
||||
from PIL import Image as PILImage
|
||||
|
||||
# Convert to float32 [0-1]
|
||||
float_data = img_obj.to_normalized_float32()
|
||||
# Get uint16 data
|
||||
uint16_data = img_obj.data
|
||||
|
||||
# Replicate to 3 channels
|
||||
if len(float_data.shape) == 2:
|
||||
float_3ch = np.stack([float_data] * 3, axis=-1)
|
||||
# Use PIL's merge method with 'I;16' channels (proper way for 16-bit RGB)
|
||||
if len(uint16_data.shape) == 2:
|
||||
# Grayscale - replicate to RGB
|
||||
r_img = PILImage.fromarray(uint16_data, mode="I;16")
|
||||
g_img = PILImage.fromarray(uint16_data, mode="I;16")
|
||||
b_img = PILImage.fromarray(uint16_data, mode="I;16")
|
||||
else:
|
||||
float_3ch = float_data
|
||||
r_img = PILImage.fromarray(uint16_data[:, :, 0], mode="I;16")
|
||||
g_img = PILImage.fromarray(
|
||||
(
|
||||
uint16_data[:, :, 1]
|
||||
if uint16_data.shape[2] > 1
|
||||
else uint16_data[:, :, 0]
|
||||
),
|
||||
mode="I;16",
|
||||
)
|
||||
b_img = PILImage.fromarray(
|
||||
(
|
||||
uint16_data[:, :, 2]
|
||||
if uint16_data.shape[2] > 2
|
||||
else uint16_data[:, :, 0]
|
||||
),
|
||||
mode="I;16",
|
||||
)
|
||||
|
||||
# Save as float32 TIFF
|
||||
output_file = dst_dir / "test_float32_3ch.tif"
|
||||
tifffile.imwrite(output_file, float_3ch.astype(np.float32))
|
||||
print(f"Saved float32 3-channel TIFF: {output_file}")
|
||||
# Merge channels into RGB
|
||||
rgb_img = PILImage.merge("RGB", (r_img, g_img, b_img))
|
||||
|
||||
# Verify the output
|
||||
loaded = tifffile.imread(output_file)
|
||||
print(f"\nVerifying output:")
|
||||
# Save as PNG
|
||||
output_file = dst_dir / "test_16bit_rgb.png"
|
||||
rgb_img.save(output_file)
|
||||
print(f"Saved 16-bit RGB PNG: {output_file}")
|
||||
print(f" PIL mode after merge: {rgb_img.mode}")
|
||||
|
||||
# Verify the output - Load with OpenCV (as YOLO does)
|
||||
import cv2
|
||||
|
||||
loaded = cv2.imread(str(output_file), cv2.IMREAD_UNCHANGED)
|
||||
print(f"\nVerifying output (loaded with OpenCV):")
|
||||
print(f" Shape: {loaded.shape}")
|
||||
print(f" Dtype: {loaded.dtype}")
|
||||
print(f" Channels: {loaded.shape[2] if len(loaded.shape) == 3 else 1}")
|
||||
print(f" Range: [{loaded.min():.6f}, {loaded.max():.6f}]")
|
||||
print(f" Range: [{loaded.min()}, {loaded.max()}]")
|
||||
print(f" Unique values: {len(np.unique(loaded[:,:,0]))}")
|
||||
|
||||
# Assertions
|
||||
assert loaded.dtype == np.float32, f"Expected float32, got {loaded.dtype}"
|
||||
assert loaded.dtype == np.uint16, f"Expected uint16, got {loaded.dtype}"
|
||||
assert loaded.shape[2] == 3, f"Expected 3 channels, got {loaded.shape[2]}"
|
||||
assert (
|
||||
0.0 <= loaded.min() <= loaded.max() <= 1.0
|
||||
), f"Expected [0,1] range, got [{loaded.min()}, {loaded.max()}]"
|
||||
loaded.min() >= 0 and loaded.max() <= 65535
|
||||
), f"Expected [0,65535] range, got [{loaded.min()}, {loaded.max()}]"
|
||||
|
||||
# Verify all channels are identical (replicated grayscale)
|
||||
assert np.array_equal(
|
||||
@@ -84,21 +110,20 @@ def test_float32_3ch_conversion():
|
||||
loaded[:, :, 0], loaded[:, :, 2]
|
||||
), "Channel 0 and 2 should be identical"
|
||||
|
||||
# Verify float32 precision (not quantized to uint8 steps)
|
||||
# Verify no data loss
|
||||
unique_vals = len(np.unique(loaded[:, :, 0]))
|
||||
print(f"\n Precision check:")
|
||||
print(f" Unique values in channel: {unique_vals}")
|
||||
print(f" Source unique values: {len(np.unique(test_data))}")
|
||||
|
||||
# The final unique values should match source (no loss from conversion)
|
||||
assert unique_vals == len(
|
||||
np.unique(test_data)
|
||||
), f"Expected {len(np.unique(test_data))} unique values, got {unique_vals}"
|
||||
|
||||
print("\n✓ All conversion tests passed!")
|
||||
print(" - Float32 dtype preserved")
|
||||
print(" - uint16 dtype preserved")
|
||||
print(" - 3 channels created")
|
||||
print(" - Range [0-1] maintained")
|
||||
print(" - Range [0-65535] maintained")
|
||||
print(" - No precision loss from conversion")
|
||||
print(" - Channels properly replicated")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user