Implementing float 32 data managent

This commit is contained in:
2025-12-13 00:31:23 +02:00
parent 9c4c39fb39
commit b3b1e3acff
4 changed files with 167 additions and 40 deletions

View File

@@ -11,6 +11,7 @@ pyqtgraph>=0.13.0
opencv-python>=4.8.0
Pillow>=10.0.0
numpy>=1.24.0
tifffile>=2023.0.0
# Database
sqlalchemy>=2.0.0

View File

@@ -9,6 +9,7 @@ from typing import Optional, List, Dict, Callable, Any
import torch
import tempfile
import os
import numpy as np
from src.utils.image import Image, convert_grayscale_to_rgb_preserve_range
from src.utils.logger import get_logger
@@ -228,7 +229,14 @@ class YOLOWrapper:
raise
def _prepare_source(self, source):
"""Convert single-channel images to RGB temporarily for inference."""
"""Convert single-channel images to RGB for inference.
For 16-bit TIFF files, this will:
1. Load using tifffile
2. Normalize to float32 [0-1] (NO uint8 conversion to avoid data loss)
3. Replicate grayscale → RGB (3 channels)
4. Pass directly as numpy array to YOLO
"""
cleanup_path = None
if isinstance(source, (str, Path)):
@@ -236,22 +244,61 @@ class YOLOWrapper:
if source_path.is_file():
try:
img_obj = Image(source_path)
pil_img = img_obj.pil_image
if len(pil_img.getbands()) == 1:
rgb_img = convert_grayscale_to_rgb_preserve_range(pil_img)
else:
rgb_img = pil_img.convert("RGB")
suffix = source_path.suffix or ".png"
tmp = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
tmp_path = tmp.name
tmp.close()
rgb_img.save(tmp_path)
cleanup_path = tmp_path
logger.info(
f"Converted image {source_path} to RGB for inference at {tmp_path}"
# Check if it's a 16-bit TIFF file
is_16bit_tiff = (
source_path.suffix.lower() in [".tif", ".tiff"]
and img_obj.dtype == np.uint16
)
return tmp_path, cleanup_path
if is_16bit_tiff:
# Process 16-bit TIFF: normalize to float32 [0-1]
# NO uint8 conversion - pass float32 directly to avoid data loss
normalized_float = img_obj.to_normalized_float32()
# Convert grayscale to RGB by replicating channels
if len(normalized_float.shape) == 2:
# Grayscale: H,W → H,W,3
rgb_float = np.stack([normalized_float] * 3, axis=-1)
elif (
len(normalized_float.shape) == 3
and normalized_float.shape[2] == 1
):
# Grayscale with channel dim: H,W,1 → H,W,3
rgb_float = np.repeat(normalized_float, 3, axis=2)
else:
# Already multi-channel
rgb_float = normalized_float
# Ensure contiguous array and float32
rgb_float = np.ascontiguousarray(rgb_float, dtype=np.float32)
logger.info(
f"Loaded 16-bit TIFF {source_path} as float32 [0-1] RGB "
f"(shape: {rgb_float.shape}, dtype: {rgb_float.dtype}, "
f"range: [{rgb_float.min():.4f}, {rgb_float.max():.4f}])"
)
# Return numpy array directly - YOLO can handle it
return rgb_float, cleanup_path
else:
# Standard processing for other images
pil_img = img_obj.pil_image
if len(pil_img.getbands()) == 1:
rgb_img = convert_grayscale_to_rgb_preserve_range(pil_img)
else:
rgb_img = pil_img.convert("RGB")
suffix = source_path.suffix or ".png"
tmp = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
tmp_path = tmp.name
tmp.close()
rgb_img.save(tmp_path)
cleanup_path = tmp_path
logger.info(
f"Converted image {source_path} to RGB for inference at {tmp_path}"
)
return tmp_path, cleanup_path
except Exception as convert_error:
logger.warning(
f"Failed to preprocess {source_path} as RGB, continuing with original file: {convert_error}"

View File

@@ -7,6 +7,7 @@ import numpy as np
from pathlib import Path
from typing import Optional, Tuple, Union
from PIL import Image as PILImage
import tifffile
from src.utils.logger import get_logger
from src.utils.file_utils import validate_file_path, is_image_file
@@ -85,35 +86,75 @@ class Image:
)
try:
# Load with OpenCV (returns BGR format)
self._data = cv2.imread(str(self.path), cv2.IMREAD_UNCHANGED)
# Check if it's a TIFF file - use tifffile for better support
if self.path.suffix.lower() in [".tif", ".tiff"]:
self._data = tifffile.imread(str(self.path))
if self._data is None:
raise ImageLoadError(f"Failed to load image with OpenCV: {self.path}")
if self._data is None:
raise ImageLoadError(
f"Failed to load TIFF with tifffile: {self.path}"
)
# Extract metadata
self._height, self._width = self._data.shape[:2]
self._channels = self._data.shape[2] if len(self._data.shape) == 3 else 1
self._format = self.path.suffix.lower().lstrip(".")
self._size_bytes = self.path.stat().st_size
self._dtype = self._data.dtype
# Extract metadata
self._height, self._width = (
self._data.shape[:2]
if len(self._data.shape) >= 2
else (self._data.shape[0], 1)
)
self._channels = (
self._data.shape[2] if len(self._data.shape) == 3 else 1
)
self._format = self.path.suffix.lower().lstrip(".")
self._size_bytes = self.path.stat().st_size
self._dtype = self._data.dtype
# Load PIL version for compatibility (convert BGR to RGB)
if self._channels == 3:
rgb_data = cv2.cvtColor(self._data, cv2.COLOR_BGR2RGB)
self._pil_image = PILImage.fromarray(rgb_data)
elif self._channels == 4:
rgba_data = cv2.cvtColor(self._data, cv2.COLOR_BGRA2RGBA)
self._pil_image = PILImage.fromarray(rgba_data)
# Load PIL version for compatibility
if self._channels == 1:
# Grayscale
self._pil_image = PILImage.fromarray(self._data)
else:
# Multi-channel (RGB or RGBA)
self._pil_image = PILImage.fromarray(self._data)
logger.info(
f"Successfully loaded TIFF image: {self.path.name} "
f"({self._width}x{self._height}, {self._channels} channels, "
f"dtype={self._dtype}, {self._format.upper()})"
)
else:
# Grayscale
self._pil_image = PILImage.fromarray(self._data)
# Load with OpenCV (returns BGR format) for non-TIFF images
self._data = cv2.imread(str(self.path), cv2.IMREAD_UNCHANGED)
logger.info(
f"Successfully loaded image: {self.path.name} "
f"({self._width}x{self._height}, {self._channels} channels, "
f"{self._format.upper()})"
)
if self._data is None:
raise ImageLoadError(
f"Failed to load image with OpenCV: {self.path}"
)
# Extract metadata
self._height, self._width = self._data.shape[:2]
self._channels = (
self._data.shape[2] if len(self._data.shape) == 3 else 1
)
self._format = self.path.suffix.lower().lstrip(".")
self._size_bytes = self.path.stat().st_size
self._dtype = self._data.dtype
# Load PIL version for compatibility (convert BGR to RGB)
if self._channels == 3:
rgb_data = cv2.cvtColor(self._data, cv2.COLOR_BGR2RGB)
self._pil_image = PILImage.fromarray(rgb_data)
elif self._channels == 4:
rgba_data = cv2.cvtColor(self._data, cv2.COLOR_BGRA2RGBA)
self._pil_image = PILImage.fromarray(rgba_data)
else:
# Grayscale
self._pil_image = PILImage.fromarray(self._data)
logger.info(
f"Successfully loaded image: {self.path.name} "
f"({self._width}x{self._height}, {self._channels} channels, "
f"{self._format.upper()})"
)
except Exception as e:
logger.error(f"Error loading image {self.path}: {e}")
@@ -277,6 +318,44 @@ class Image:
"""
return self._channels >= 3
def to_normalized_float32(self) -> np.ndarray:
"""
Convert image data to normalized float32 in range [0, 1].
For 16-bit images, this properly scales the full dynamic range.
For 8-bit images, divides by 255.
Already float images are clipped to [0, 1].
Returns:
Normalized image data as float32 numpy array [0, 1]
"""
data = self._data.astype(np.float32)
if self._dtype == np.uint16:
# 16-bit: normalize by max value (65535)
data = data / 65535.0
elif self._dtype == np.uint8:
# 8-bit: normalize by 255
data = data / 255.0
elif np.issubdtype(self._dtype, np.floating):
# Already float, just clip to [0, 1]
data = np.clip(data, 0.0, 1.0)
else:
# Other integer types: use dtype info
if np.issubdtype(self._dtype, np.integer):
max_val = np.iinfo(self._dtype).max
data = data / float(max_val)
else:
# Unknown type: attempt min-max normalization
min_val = data.min()
max_val = data.max()
if max_val > min_val:
data = (data - min_val) / (max_val - min_val)
else:
data = np.zeros_like(data)
return np.clip(data, 0.0, 1.0)
def __repr__(self) -> str:
"""String representation of the Image object."""
return (

View File

@@ -86,7 +86,7 @@ class UT:
# TODO add image coordinates normalization
coords = ""
for x, y in roi.subpixel_coordinates:
coords += f"{x/self.width} {y/self.height}"
coords += f"{x/self.width} {y/self.height} "
f.write(f"{class_index} {coords}\n")
return