Compare commits
20 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| e5036c10cf | |||
| c7e388d9ae | |||
| 6b995e7325 | |||
| 0e0741d323 | |||
| dd99a0677c | |||
| 9c4c39fb39 | |||
| 20a87c9040 | |||
| 9f7d2be1ac | |||
| dbde07c0e8 | |||
| b3c5a51dbb | |||
| 9a221acb63 | |||
| 32a6a122bd | |||
| 9ba44043ef | |||
| 8eb1cc8c86 | |||
| e4ce882a18 | |||
| 6b6d6fad03 | |||
| c0684a9c14 | |||
| 221c80aa8c | |||
| 833b222fad | |||
| 5370d31dce |
@@ -12,12 +12,26 @@ image_repository:
|
||||
models:
|
||||
default_base_model: yolov8s-seg.pt
|
||||
models_directory: data/models
|
||||
base_model_choices:
|
||||
- yolov8s-seg.pt
|
||||
- yolo11s-seg.pt
|
||||
training:
|
||||
default_epochs: 100
|
||||
default_batch_size: 16
|
||||
default_imgsz: 640
|
||||
default_imgsz: 1024
|
||||
default_patience: 50
|
||||
default_lr0: 0.01
|
||||
two_stage:
|
||||
enabled: false
|
||||
stage1:
|
||||
epochs: 20
|
||||
lr0: 0.0005
|
||||
patience: 10
|
||||
freeze: 10
|
||||
stage2:
|
||||
epochs: 150
|
||||
lr0: 0.0003
|
||||
patience: 30
|
||||
last_dataset_yaml: /home/martin/code/object_detection/data/datasets/data.yaml
|
||||
last_dataset_dir: /home/martin/code/object_detection/data/datasets
|
||||
detection:
|
||||
|
||||
@@ -13,8 +13,9 @@ import hashlib
|
||||
import yaml
|
||||
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.image import Image
|
||||
|
||||
IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp")
|
||||
IMAGE_EXTENSIONS = tuple(Image.SUPPORTED_EXTENSIONS)
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
@@ -450,6 +451,25 @@ class DatabaseManager:
|
||||
filters["model_id"] = model_id
|
||||
return self.get_detections(filters)
|
||||
|
||||
def delete_detections_for_image(
|
||||
self, image_id: int, model_id: Optional[int] = None
|
||||
) -> int:
|
||||
"""Delete detections tied to a specific image and optional model."""
|
||||
conn = self.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
if model_id is not None:
|
||||
cursor.execute(
|
||||
"DELETE FROM detections WHERE image_id = ? AND model_id = ?",
|
||||
(image_id, model_id),
|
||||
)
|
||||
else:
|
||||
cursor.execute("DELETE FROM detections WHERE image_id = ?", (image_id,))
|
||||
conn.commit()
|
||||
return cursor.rowcount
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def delete_detections_for_model(self, model_id: int) -> int:
|
||||
"""Delete all detections for a specific model."""
|
||||
conn = self.get_connection()
|
||||
|
||||
@@ -168,7 +168,7 @@ class AnnotationTab(QWidget):
|
||||
self,
|
||||
"Select Image",
|
||||
start_dir,
|
||||
"Images (*.jpg *.jpeg *.png *.tif *.tiff *.bmp)",
|
||||
"Images (*" + " *".join(Image.SUPPORTED_EXTENSIONS) + ")",
|
||||
)
|
||||
|
||||
if not file_path:
|
||||
|
||||
@@ -20,12 +20,14 @@ from PySide6.QtWidgets import (
|
||||
)
|
||||
from PySide6.QtCore import Qt, QThread, Signal
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from src.database.db_manager import DatabaseManager
|
||||
from src.utils.config_manager import ConfigManager
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.file_utils import get_image_files
|
||||
from src.model.inference import InferenceEngine
|
||||
from src.utils.image import Image
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -147,30 +149,66 @@ class DetectionTab(QWidget):
|
||||
self.model_combo.currentIndexChanged.connect(self._on_model_changed)
|
||||
|
||||
def _load_models(self):
|
||||
"""Load available models from database."""
|
||||
"""Load available models from database and local storage."""
|
||||
try:
|
||||
models = self.db_manager.get_models()
|
||||
self.model_combo.clear()
|
||||
models = self.db_manager.get_models()
|
||||
has_models = False
|
||||
|
||||
if not models:
|
||||
self.model_combo.addItem("No models available", None)
|
||||
self._set_buttons_enabled(False)
|
||||
return
|
||||
known_paths = set()
|
||||
|
||||
# Add base model option
|
||||
# Add base model option first (always available)
|
||||
base_model = self.config_manager.get(
|
||||
"models.default_base_model", "yolov8s-seg.pt"
|
||||
)
|
||||
self.model_combo.addItem(
|
||||
f"Base Model ({base_model})", {"id": 0, "path": base_model}
|
||||
)
|
||||
if base_model:
|
||||
base_data = {
|
||||
"id": 0,
|
||||
"path": base_model,
|
||||
"model_name": Path(base_model).stem or "Base Model",
|
||||
"model_version": "pretrained",
|
||||
"base_model": base_model,
|
||||
"source": "base",
|
||||
}
|
||||
self.model_combo.addItem(f"Base Model ({base_model})", base_data)
|
||||
known_paths.add(self._normalize_model_path(base_model))
|
||||
has_models = True
|
||||
|
||||
# Add trained models
|
||||
# Add trained models from database
|
||||
for model in models:
|
||||
display_name = f"{model['model_name']} v{model['model_version']}"
|
||||
self.model_combo.addItem(display_name, model)
|
||||
model_data = {**model, "path": model.get("model_path")}
|
||||
normalized = self._normalize_model_path(model_data.get("path"))
|
||||
if normalized:
|
||||
known_paths.add(normalized)
|
||||
self.model_combo.addItem(display_name, model_data)
|
||||
has_models = True
|
||||
|
||||
self._set_buttons_enabled(True)
|
||||
# Discover local model files not yet in the database
|
||||
local_models = self._discover_local_models()
|
||||
for model_path in local_models:
|
||||
normalized = self._normalize_model_path(model_path)
|
||||
if normalized in known_paths:
|
||||
continue
|
||||
|
||||
display_name = f"Local Model ({Path(model_path).stem})"
|
||||
model_data = {
|
||||
"id": None,
|
||||
"path": str(model_path),
|
||||
"model_name": Path(model_path).stem,
|
||||
"model_version": "local",
|
||||
"base_model": Path(model_path).stem,
|
||||
"source": "local",
|
||||
}
|
||||
self.model_combo.addItem(display_name, model_data)
|
||||
known_paths.add(normalized)
|
||||
has_models = True
|
||||
|
||||
if not has_models:
|
||||
self.model_combo.addItem("No models available", None)
|
||||
self._set_buttons_enabled(False)
|
||||
else:
|
||||
self._set_buttons_enabled(True)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading models: {e}")
|
||||
@@ -199,7 +237,7 @@ class DetectionTab(QWidget):
|
||||
self,
|
||||
"Select Image",
|
||||
start_dir,
|
||||
"Images (*.jpg *.jpeg *.png *.tif *.tiff *.bmp)",
|
||||
"Images (*" + " *".join(Image.SUPPORTED_EXTENSIONS) + ")",
|
||||
)
|
||||
|
||||
if not file_path:
|
||||
@@ -249,25 +287,39 @@ class DetectionTab(QWidget):
|
||||
QMessageBox.warning(self, "No Model", "Please select a model first.")
|
||||
return
|
||||
|
||||
model_path = model_data["path"]
|
||||
model_id = model_data["id"]
|
||||
model_path = model_data.get("path")
|
||||
if not model_path:
|
||||
QMessageBox.warning(
|
||||
self, "Invalid Model", "Selected model is missing a file path."
|
||||
)
|
||||
return
|
||||
|
||||
# Ensure we have a valid model ID (create entry for base model if needed)
|
||||
if model_id == 0:
|
||||
# Create database entry for base model
|
||||
base_model = self.config_manager.get(
|
||||
"models.default_base_model", "yolov8s-seg.pt"
|
||||
)
|
||||
model_id = self.db_manager.add_model(
|
||||
model_name="Base Model",
|
||||
model_version="pretrained",
|
||||
model_path=base_model,
|
||||
base_model=base_model,
|
||||
if not Path(model_path).exists():
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"Model Not Found",
|
||||
f"The selected model file could not be found:\n{model_path}",
|
||||
)
|
||||
return
|
||||
|
||||
model_id = model_data.get("id")
|
||||
|
||||
# Ensure we have a database entry for the selected model
|
||||
if model_id in (None, 0):
|
||||
model_id = self._ensure_model_record(model_data)
|
||||
if not model_id:
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"Model Registration Failed",
|
||||
"Unable to register the selected model in the database.",
|
||||
)
|
||||
return
|
||||
|
||||
normalized_model_path = self._normalize_model_path(model_path) or model_path
|
||||
|
||||
# Create inference engine
|
||||
self.inference_engine = InferenceEngine(
|
||||
model_path, self.db_manager, model_id
|
||||
normalized_model_path, self.db_manager, model_id
|
||||
)
|
||||
|
||||
# Get confidence threshold
|
||||
@@ -338,6 +390,76 @@ class DetectionTab(QWidget):
|
||||
self.batch_btn.setEnabled(enabled)
|
||||
self.model_combo.setEnabled(enabled)
|
||||
|
||||
def _discover_local_models(self) -> list:
|
||||
"""Scan the models directory for standalone .pt files."""
|
||||
models_dir = self.config_manager.get_models_directory()
|
||||
if not models_dir:
|
||||
return []
|
||||
|
||||
models_path = Path(models_dir)
|
||||
if not models_path.exists():
|
||||
return []
|
||||
|
||||
try:
|
||||
return sorted(
|
||||
[p for p in models_path.rglob("*.pt") if p.is_file()],
|
||||
key=lambda p: str(p).lower(),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Error discovering local models: {e}")
|
||||
return []
|
||||
|
||||
def _normalize_model_path(self, path_value) -> str:
|
||||
"""Return a normalized absolute path string for comparison."""
|
||||
if not path_value:
|
||||
return ""
|
||||
try:
|
||||
return str(Path(path_value).resolve())
|
||||
except Exception:
|
||||
return str(path_value)
|
||||
|
||||
def _ensure_model_record(self, model_data: dict) -> Optional[int]:
|
||||
"""Ensure a database record exists for the selected model."""
|
||||
model_path = model_data.get("path")
|
||||
if not model_path:
|
||||
return None
|
||||
|
||||
normalized_target = self._normalize_model_path(model_path)
|
||||
|
||||
try:
|
||||
existing_models = self.db_manager.get_models()
|
||||
for model in existing_models:
|
||||
existing_path = model.get("model_path")
|
||||
if not existing_path:
|
||||
continue
|
||||
normalized_existing = self._normalize_model_path(existing_path)
|
||||
if (
|
||||
normalized_existing == normalized_target
|
||||
or existing_path == model_path
|
||||
):
|
||||
return model["id"]
|
||||
|
||||
model_name = (
|
||||
model_data.get("model_name") or Path(model_path).stem or "Custom Model"
|
||||
)
|
||||
model_version = (
|
||||
model_data.get("model_version") or model_data.get("source") or "local"
|
||||
)
|
||||
base_model = model_data.get(
|
||||
"base_model",
|
||||
self.config_manager.get("models.default_base_model", "yolov8s-seg.pt"),
|
||||
)
|
||||
|
||||
return self.db_manager.add_model(
|
||||
model_name=model_name,
|
||||
model_version=model_version,
|
||||
model_path=normalized_target,
|
||||
base_model=base_model,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure model record for {model_path}: {e}")
|
||||
return None
|
||||
|
||||
def refresh(self):
|
||||
"""Refresh the tab."""
|
||||
self._load_models()
|
||||
|
||||
@@ -1,15 +1,39 @@
|
||||
"""
|
||||
Results tab for the microscopy object detection application.
|
||||
Results tab for browsing stored detections and visualizing overlays.
|
||||
"""
|
||||
|
||||
from PySide6.QtWidgets import QWidget, QVBoxLayout, QLabel, QGroupBox
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from PySide6.QtWidgets import (
|
||||
QWidget,
|
||||
QVBoxLayout,
|
||||
QHBoxLayout,
|
||||
QLabel,
|
||||
QGroupBox,
|
||||
QPushButton,
|
||||
QSplitter,
|
||||
QTableWidget,
|
||||
QTableWidgetItem,
|
||||
QHeaderView,
|
||||
QAbstractItemView,
|
||||
QMessageBox,
|
||||
QCheckBox,
|
||||
)
|
||||
from PySide6.QtCore import Qt
|
||||
|
||||
from src.database.db_manager import DatabaseManager
|
||||
from src.utils.config_manager import ConfigManager
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.image import Image, ImageLoadError
|
||||
from src.gui.widgets import AnnotationCanvasWidget
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class ResultsTab(QWidget):
|
||||
"""Results tab placeholder."""
|
||||
"""Results tab showing detection history and preview overlays."""
|
||||
|
||||
def __init__(
|
||||
self, db_manager: DatabaseManager, config_manager: ConfigManager, parent=None
|
||||
@@ -18,29 +42,398 @@ class ResultsTab(QWidget):
|
||||
self.db_manager = db_manager
|
||||
self.config_manager = config_manager
|
||||
|
||||
self.detection_summary: List[Dict] = []
|
||||
self.current_selection: Optional[Dict] = None
|
||||
self.current_image: Optional[Image] = None
|
||||
self.current_detections: List[Dict] = []
|
||||
self._image_path_cache: Dict[str, str] = {}
|
||||
|
||||
self._setup_ui()
|
||||
self.refresh()
|
||||
|
||||
def _setup_ui(self):
|
||||
"""Setup user interface."""
|
||||
layout = QVBoxLayout()
|
||||
|
||||
group = QGroupBox("Results")
|
||||
group_layout = QVBoxLayout()
|
||||
label = QLabel(
|
||||
"Results viewer will be implemented here.\n\n"
|
||||
"Features:\n"
|
||||
"- Detection history browser\n"
|
||||
"- Advanced filtering\n"
|
||||
"- Statistics dashboard\n"
|
||||
"- Export functionality"
|
||||
)
|
||||
group_layout.addWidget(label)
|
||||
group.setLayout(group_layout)
|
||||
# Splitter for list + preview
|
||||
splitter = QSplitter(Qt.Horizontal)
|
||||
|
||||
layout.addWidget(group)
|
||||
layout.addStretch()
|
||||
# Left pane: detection list
|
||||
left_container = QWidget()
|
||||
left_layout = QVBoxLayout()
|
||||
left_layout.setContentsMargins(0, 0, 0, 0)
|
||||
|
||||
controls_layout = QHBoxLayout()
|
||||
self.refresh_btn = QPushButton("Refresh")
|
||||
self.refresh_btn.clicked.connect(self.refresh)
|
||||
controls_layout.addWidget(self.refresh_btn)
|
||||
controls_layout.addStretch()
|
||||
left_layout.addLayout(controls_layout)
|
||||
|
||||
self.results_table = QTableWidget(0, 5)
|
||||
self.results_table.setHorizontalHeaderLabels(
|
||||
["Image", "Model", "Detections", "Classes", "Last Updated"]
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
0, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
1, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
2, QHeaderView.ResizeToContents
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
3, QHeaderView.Stretch
|
||||
)
|
||||
self.results_table.horizontalHeader().setSectionResizeMode(
|
||||
4, QHeaderView.ResizeToContents
|
||||
)
|
||||
self.results_table.setSelectionBehavior(QAbstractItemView.SelectRows)
|
||||
self.results_table.setSelectionMode(QAbstractItemView.SingleSelection)
|
||||
self.results_table.setEditTriggers(QAbstractItemView.NoEditTriggers)
|
||||
self.results_table.itemSelectionChanged.connect(self._on_result_selected)
|
||||
|
||||
left_layout.addWidget(self.results_table)
|
||||
left_container.setLayout(left_layout)
|
||||
|
||||
# Right pane: preview canvas and controls
|
||||
right_container = QWidget()
|
||||
right_layout = QVBoxLayout()
|
||||
right_layout.setContentsMargins(0, 0, 0, 0)
|
||||
|
||||
preview_group = QGroupBox("Detection Preview")
|
||||
preview_layout = QVBoxLayout()
|
||||
|
||||
self.preview_canvas = AnnotationCanvasWidget()
|
||||
self.preview_canvas.set_polyline_enabled(False)
|
||||
self.preview_canvas.set_show_bboxes(True)
|
||||
preview_layout.addWidget(self.preview_canvas)
|
||||
|
||||
toggles_layout = QHBoxLayout()
|
||||
self.show_masks_checkbox = QCheckBox("Show Masks")
|
||||
self.show_masks_checkbox.setChecked(False)
|
||||
self.show_masks_checkbox.stateChanged.connect(self._apply_detection_overlays)
|
||||
self.show_bboxes_checkbox = QCheckBox("Show Bounding Boxes")
|
||||
self.show_bboxes_checkbox.setChecked(True)
|
||||
self.show_bboxes_checkbox.stateChanged.connect(self._toggle_bboxes)
|
||||
self.show_confidence_checkbox = QCheckBox("Show Confidence")
|
||||
self.show_confidence_checkbox.setChecked(False)
|
||||
self.show_confidence_checkbox.stateChanged.connect(
|
||||
self._apply_detection_overlays
|
||||
)
|
||||
toggles_layout.addWidget(self.show_masks_checkbox)
|
||||
toggles_layout.addWidget(self.show_bboxes_checkbox)
|
||||
toggles_layout.addWidget(self.show_confidence_checkbox)
|
||||
toggles_layout.addStretch()
|
||||
preview_layout.addLayout(toggles_layout)
|
||||
|
||||
self.summary_label = QLabel("Select a detection result to preview.")
|
||||
self.summary_label.setWordWrap(True)
|
||||
preview_layout.addWidget(self.summary_label)
|
||||
|
||||
preview_group.setLayout(preview_layout)
|
||||
right_layout.addWidget(preview_group)
|
||||
right_container.setLayout(right_layout)
|
||||
|
||||
splitter.addWidget(left_container)
|
||||
splitter.addWidget(right_container)
|
||||
splitter.setStretchFactor(0, 1)
|
||||
splitter.setStretchFactor(1, 2)
|
||||
|
||||
layout.addWidget(splitter)
|
||||
self.setLayout(layout)
|
||||
|
||||
def refresh(self):
|
||||
"""Refresh the tab."""
|
||||
pass
|
||||
"""Refresh the detection list and preview."""
|
||||
self._load_detection_summary()
|
||||
self._populate_results_table()
|
||||
self.current_selection = None
|
||||
self.current_image = None
|
||||
self.current_detections = []
|
||||
self.preview_canvas.clear()
|
||||
self.summary_label.setText("Select a detection result to preview.")
|
||||
|
||||
def _load_detection_summary(self):
|
||||
"""Load latest detection summaries grouped by image + model."""
|
||||
try:
|
||||
detections = self.db_manager.get_detections(limit=500)
|
||||
summary_map: Dict[tuple, Dict] = {}
|
||||
|
||||
for det in detections:
|
||||
key = (det["image_id"], det["model_id"])
|
||||
metadata = det.get("metadata") or {}
|
||||
entry = summary_map.setdefault(
|
||||
key,
|
||||
{
|
||||
"image_id": det["image_id"],
|
||||
"model_id": det["model_id"],
|
||||
"image_path": det.get("image_path"),
|
||||
"image_filename": det.get("image_filename")
|
||||
or det.get("image_path"),
|
||||
"model_name": det.get("model_name", ""),
|
||||
"model_version": det.get("model_version", ""),
|
||||
"last_detected": det.get("detected_at"),
|
||||
"count": 0,
|
||||
"classes": set(),
|
||||
"source_path": metadata.get("source_path"),
|
||||
"repository_root": metadata.get("repository_root"),
|
||||
},
|
||||
)
|
||||
|
||||
entry["count"] += 1
|
||||
if det.get("detected_at") and (
|
||||
not entry.get("last_detected")
|
||||
or str(det.get("detected_at")) > str(entry.get("last_detected"))
|
||||
):
|
||||
entry["last_detected"] = det.get("detected_at")
|
||||
if det.get("class_name"):
|
||||
entry["classes"].add(det["class_name"])
|
||||
if metadata.get("source_path") and not entry.get("source_path"):
|
||||
entry["source_path"] = metadata.get("source_path")
|
||||
if metadata.get("repository_root") and not entry.get("repository_root"):
|
||||
entry["repository_root"] = metadata.get("repository_root")
|
||||
|
||||
self.detection_summary = sorted(
|
||||
summary_map.values(),
|
||||
key=lambda x: str(x.get("last_detected") or ""),
|
||||
reverse=True,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load detection summary: {e}")
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"Error",
|
||||
f"Failed to load detection results:\n{str(e)}",
|
||||
)
|
||||
self.detection_summary = []
|
||||
|
||||
def _populate_results_table(self):
|
||||
"""Populate the table widget with detection summaries."""
|
||||
self.results_table.setRowCount(len(self.detection_summary))
|
||||
|
||||
for row, entry in enumerate(self.detection_summary):
|
||||
model_label = f"{entry['model_name']} {entry['model_version']}".strip()
|
||||
class_list = (
|
||||
", ".join(sorted(entry["classes"])) if entry["classes"] else "-"
|
||||
)
|
||||
|
||||
items = [
|
||||
QTableWidgetItem(entry.get("image_filename", "")),
|
||||
QTableWidgetItem(model_label),
|
||||
QTableWidgetItem(str(entry.get("count", 0))),
|
||||
QTableWidgetItem(class_list),
|
||||
QTableWidgetItem(str(entry.get("last_detected") or "")),
|
||||
]
|
||||
|
||||
for col, item in enumerate(items):
|
||||
item.setData(Qt.UserRole, row)
|
||||
self.results_table.setItem(row, col, item)
|
||||
|
||||
self.results_table.clearSelection()
|
||||
|
||||
def _on_result_selected(self):
|
||||
"""Handle selection changes in the detection table."""
|
||||
selected_items = self.results_table.selectedItems()
|
||||
if not selected_items:
|
||||
return
|
||||
|
||||
row = selected_items[0].data(Qt.UserRole)
|
||||
if row is None or row >= len(self.detection_summary):
|
||||
return
|
||||
|
||||
entry = self.detection_summary[row]
|
||||
if (
|
||||
self.current_selection
|
||||
and self.current_selection.get("image_id") == entry["image_id"]
|
||||
and self.current_selection.get("model_id") == entry["model_id"]
|
||||
):
|
||||
return
|
||||
|
||||
self.current_selection = entry
|
||||
|
||||
image_path = self._resolve_image_path(entry)
|
||||
if not image_path:
|
||||
QMessageBox.warning(
|
||||
self,
|
||||
"Image Not Found",
|
||||
"Unable to locate the image file for this detection.",
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
self.current_image = Image(image_path)
|
||||
self.preview_canvas.load_image(self.current_image)
|
||||
except ImageLoadError as e:
|
||||
logger.error(f"Failed to load image '{image_path}': {e}")
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"Image Error",
|
||||
f"Failed to load image for preview:\n{str(e)}",
|
||||
)
|
||||
return
|
||||
|
||||
self._load_detections_for_selection(entry)
|
||||
self._apply_detection_overlays()
|
||||
self._update_summary_label(entry)
|
||||
|
||||
def _load_detections_for_selection(self, entry: Dict):
|
||||
"""Load detection records for the selected image/model pair."""
|
||||
self.current_detections = []
|
||||
if not entry:
|
||||
return
|
||||
|
||||
try:
|
||||
filters = {"image_id": entry["image_id"], "model_id": entry["model_id"]}
|
||||
self.current_detections = self.db_manager.get_detections(filters)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load detections for preview: {e}")
|
||||
QMessageBox.critical(
|
||||
self,
|
||||
"Error",
|
||||
f"Failed to load detections for this image:\n{str(e)}",
|
||||
)
|
||||
self.current_detections = []
|
||||
|
||||
def _apply_detection_overlays(self):
|
||||
"""Draw detections onto the preview canvas based on current toggles."""
|
||||
self.preview_canvas.clear_annotations()
|
||||
self.preview_canvas.set_show_bboxes(self.show_bboxes_checkbox.isChecked())
|
||||
|
||||
if not self.current_detections or not self.current_image:
|
||||
return
|
||||
|
||||
for det in self.current_detections:
|
||||
color = self._get_class_color(det.get("class_name"))
|
||||
|
||||
if self.show_masks_checkbox.isChecked() and det.get("segmentation_mask"):
|
||||
mask_points = self._convert_mask(det["segmentation_mask"])
|
||||
if mask_points:
|
||||
self.preview_canvas.draw_saved_polyline(mask_points, color)
|
||||
|
||||
bbox = [
|
||||
det.get("x_min"),
|
||||
det.get("y_min"),
|
||||
det.get("x_max"),
|
||||
det.get("y_max"),
|
||||
]
|
||||
if all(v is not None for v in bbox):
|
||||
label = None
|
||||
if self.show_confidence_checkbox.isChecked():
|
||||
confidence = det.get("confidence")
|
||||
if confidence is not None:
|
||||
label = f"{confidence:.2f}"
|
||||
self.preview_canvas.draw_saved_bbox(bbox, color, label=label)
|
||||
|
||||
def _convert_mask(self, mask_points: List[List[float]]) -> List[List[float]]:
|
||||
"""Convert stored [x, y] masks to [y, x] format for the canvas."""
|
||||
converted = []
|
||||
for point in mask_points:
|
||||
if len(point) >= 2:
|
||||
x, y = point[0], point[1]
|
||||
converted.append([y, x])
|
||||
return converted
|
||||
|
||||
def _toggle_bboxes(self):
|
||||
"""Update bounding box visibility on the canvas."""
|
||||
self.preview_canvas.set_show_bboxes(self.show_bboxes_checkbox.isChecked())
|
||||
# Re-render to respect show/hide when toggled
|
||||
self._apply_detection_overlays()
|
||||
|
||||
def _update_summary_label(self, entry: Dict):
|
||||
"""Display textual summary for the selected detection run."""
|
||||
classes = ", ".join(sorted(entry.get("classes", []))) or "-"
|
||||
summary_text = (
|
||||
f"Image: {entry.get('image_filename', 'unknown')}\n"
|
||||
f"Model: {entry.get('model_name', '')} {entry.get('model_version', '')}\n"
|
||||
f"Detections: {entry.get('count', 0)}\n"
|
||||
f"Classes: {classes}\n"
|
||||
f"Last Updated: {entry.get('last_detected', 'n/a')}"
|
||||
)
|
||||
self.summary_label.setText(summary_text)
|
||||
|
||||
def _resolve_image_path(self, entry: Dict) -> Optional[str]:
|
||||
"""Resolve an image path using metadata, cache, and repository hints."""
|
||||
relative_path = entry.get("image_path") if entry else None
|
||||
cache_key = relative_path or entry.get("source_path")
|
||||
if cache_key and cache_key in self._image_path_cache:
|
||||
cached = Path(self._image_path_cache[cache_key])
|
||||
if cached.exists():
|
||||
return self._image_path_cache[cache_key]
|
||||
del self._image_path_cache[cache_key]
|
||||
|
||||
candidates = []
|
||||
source_path = entry.get("source_path") if entry else None
|
||||
if source_path:
|
||||
candidates.append(Path(source_path))
|
||||
|
||||
repo_roots = []
|
||||
if entry.get("repository_root"):
|
||||
repo_roots.append(entry["repository_root"])
|
||||
config_repo = self.config_manager.get_image_repository_path()
|
||||
if config_repo:
|
||||
repo_roots.append(config_repo)
|
||||
|
||||
for root in repo_roots:
|
||||
if relative_path:
|
||||
candidates.append(Path(root) / relative_path)
|
||||
|
||||
if relative_path:
|
||||
candidates.append(Path(relative_path))
|
||||
|
||||
for candidate in candidates:
|
||||
try:
|
||||
if candidate and candidate.exists():
|
||||
resolved = str(candidate.resolve())
|
||||
if cache_key:
|
||||
self._image_path_cache[cache_key] = resolved
|
||||
return resolved
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
# Fallback: search by filename in known roots
|
||||
filename = Path(relative_path).name if relative_path else None
|
||||
if filename:
|
||||
search_roots = [Path(root) for root in repo_roots if root]
|
||||
if not search_roots:
|
||||
search_roots = [Path("data")]
|
||||
match = self._search_in_roots(filename, search_roots)
|
||||
if match:
|
||||
resolved = str(match.resolve())
|
||||
if cache_key:
|
||||
self._image_path_cache[cache_key] = resolved
|
||||
return resolved
|
||||
|
||||
return None
|
||||
|
||||
def _search_in_roots(self, filename: str, roots: List[Path]) -> Optional[Path]:
|
||||
"""Search for a file name within a list of root directories."""
|
||||
for root in roots:
|
||||
try:
|
||||
if not root.exists():
|
||||
continue
|
||||
for candidate in root.rglob(filename):
|
||||
return candidate
|
||||
except Exception as e:
|
||||
logger.debug(f"Error searching for {filename} in {root}: {e}")
|
||||
return None
|
||||
|
||||
def _get_class_color(self, class_name: Optional[str]) -> str:
|
||||
"""Return consistent color hex for a class name."""
|
||||
if not class_name:
|
||||
return "#FF6B6B"
|
||||
|
||||
color_map = self.config_manager.get_bbox_colors()
|
||||
if class_name in color_map:
|
||||
return color_map[class_name]
|
||||
|
||||
# Deterministic fallback color based on hash
|
||||
palette = [
|
||||
"#FF6B6B",
|
||||
"#4ECDC4",
|
||||
"#FFD166",
|
||||
"#1D3557",
|
||||
"#F4A261",
|
||||
"#E76F51",
|
||||
]
|
||||
return palette[hash(class_name) % len(palette)]
|
||||
|
||||
@@ -10,7 +10,6 @@ from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import yaml
|
||||
from PIL import Image as PILImage
|
||||
from PySide6.QtCore import Qt, QThread, Signal
|
||||
from PySide6.QtWidgets import (
|
||||
QWidget,
|
||||
@@ -28,24 +27,20 @@ from PySide6.QtWidgets import (
|
||||
QProgressBar,
|
||||
QSpinBox,
|
||||
QDoubleSpinBox,
|
||||
QCheckBox,
|
||||
QScrollArea,
|
||||
)
|
||||
|
||||
from src.database.db_manager import DatabaseManager
|
||||
from src.model.yolo_wrapper import YOLOWrapper
|
||||
from src.utils.config_manager import ConfigManager
|
||||
from src.utils.image import Image
|
||||
from src.utils.logger import get_logger
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
DEFAULT_IMAGE_EXTENSIONS = {
|
||||
".jpg",
|
||||
".jpeg",
|
||||
".png",
|
||||
".tif",
|
||||
".tiff",
|
||||
".bmp",
|
||||
}
|
||||
DEFAULT_IMAGE_EXTENSIONS = set(Image.SUPPORTED_EXTENSIONS)
|
||||
|
||||
|
||||
class TrainingWorker(QThread):
|
||||
@@ -67,6 +62,8 @@ class TrainingWorker(QThread):
|
||||
save_dir: str,
|
||||
run_name: str,
|
||||
parent: Optional[QThread] = None,
|
||||
stage_plan: Optional[List[Dict[str, Any]]] = None,
|
||||
total_epochs: Optional[int] = None,
|
||||
):
|
||||
super().__init__(parent)
|
||||
self.data_yaml = data_yaml
|
||||
@@ -78,6 +75,27 @@ class TrainingWorker(QThread):
|
||||
self.lr0 = lr0
|
||||
self.save_dir = save_dir
|
||||
self.run_name = run_name
|
||||
self.stage_plan = stage_plan or [
|
||||
{
|
||||
"label": "Single Stage",
|
||||
"model_path": base_model,
|
||||
"use_previous_best": False,
|
||||
"params": {
|
||||
"epochs": epochs,
|
||||
"batch": batch,
|
||||
"imgsz": imgsz,
|
||||
"patience": patience,
|
||||
"lr0": lr0,
|
||||
"freeze": 0,
|
||||
"name": run_name,
|
||||
},
|
||||
}
|
||||
]
|
||||
computed_total = sum(
|
||||
max(0, int((stage.get("params") or {}).get("epochs", 0)))
|
||||
for stage in self.stage_plan
|
||||
)
|
||||
self.total_epochs = total_epochs if total_epochs else computed_total or epochs
|
||||
self._stop_requested = False
|
||||
|
||||
def stop(self):
|
||||
@@ -86,36 +104,98 @@ class TrainingWorker(QThread):
|
||||
self.requestInterruption()
|
||||
|
||||
def run(self):
|
||||
"""Execute YOLO training and emit progress/finished signals."""
|
||||
wrapper = YOLOWrapper(self.base_model)
|
||||
"""Execute YOLO training over one or more stages and emit progress/finished signals."""
|
||||
|
||||
def on_epoch_end(trainer):
|
||||
current_epoch = getattr(trainer, "epoch", 0) + 1
|
||||
metrics: Dict[str, float] = {}
|
||||
loss_items = getattr(trainer, "loss_items", None)
|
||||
if loss_items:
|
||||
metrics["loss"] = float(loss_items[-1])
|
||||
self.progress.emit(current_epoch, self.epochs, metrics)
|
||||
if self.isInterruptionRequested() or self._stop_requested:
|
||||
setattr(trainer, "stop_training", True)
|
||||
completed_epochs = 0
|
||||
stage_history: List[Dict[str, Any]] = []
|
||||
last_stage_results: Optional[Dict[str, Any]] = None
|
||||
|
||||
callbacks = {"on_fit_epoch_end": on_epoch_end}
|
||||
for stage_index, stage in enumerate(self.stage_plan, start=1):
|
||||
if self._stop_requested or self.isInterruptionRequested():
|
||||
break
|
||||
|
||||
try:
|
||||
results = wrapper.train(
|
||||
data_yaml=self.data_yaml,
|
||||
epochs=self.epochs,
|
||||
imgsz=self.imgsz,
|
||||
batch=self.batch,
|
||||
patience=self.patience,
|
||||
save_dir=self.save_dir,
|
||||
name=self.run_name,
|
||||
lr0=self.lr0,
|
||||
callbacks=callbacks,
|
||||
stage_label = stage.get("label") or f"Stage {stage_index}"
|
||||
stage_params = dict(stage.get("params") or {})
|
||||
stage_epochs = int(stage_params.get("epochs", self.epochs))
|
||||
if stage_epochs <= 0:
|
||||
stage_epochs = 1
|
||||
batch = int(stage_params.get("batch", self.batch))
|
||||
imgsz = int(stage_params.get("imgsz", self.imgsz))
|
||||
patience = int(stage_params.get("patience", self.patience))
|
||||
lr0 = float(stage_params.get("lr0", self.lr0))
|
||||
freeze = int(stage_params.get("freeze", 0))
|
||||
run_name = stage_params.get("name") or f"{self.run_name}_stage{stage_index}"
|
||||
|
||||
weights_path = stage.get("model_path") or self.base_model
|
||||
if stage.get("use_previous_best") and last_stage_results:
|
||||
weights_path = (
|
||||
last_stage_results.get("best_model_path")
|
||||
or last_stage_results.get("last_model_path")
|
||||
or weights_path
|
||||
)
|
||||
|
||||
wrapper = YOLOWrapper(weights_path)
|
||||
stage_offset = completed_epochs
|
||||
|
||||
def on_epoch_end(trainer, offset=stage_offset):
|
||||
current_epoch = getattr(trainer, "epoch", 0) + 1
|
||||
metrics: Dict[str, float] = {}
|
||||
loss_items = getattr(trainer, "loss_items", None)
|
||||
if loss_items:
|
||||
metrics["loss"] = float(loss_items[-1])
|
||||
absolute_epoch = min(
|
||||
max(1, offset + current_epoch),
|
||||
max(1, self.total_epochs),
|
||||
)
|
||||
self.progress.emit(absolute_epoch, self.total_epochs, metrics)
|
||||
if self.isInterruptionRequested() or self._stop_requested:
|
||||
setattr(trainer, "stop_training", True)
|
||||
|
||||
callbacks = {"on_fit_epoch_end": on_epoch_end}
|
||||
|
||||
try:
|
||||
stage_result = wrapper.train(
|
||||
data_yaml=self.data_yaml,
|
||||
epochs=stage_epochs,
|
||||
imgsz=imgsz,
|
||||
batch=batch,
|
||||
patience=patience,
|
||||
save_dir=self.save_dir,
|
||||
name=run_name,
|
||||
lr0=lr0,
|
||||
callbacks=callbacks,
|
||||
freeze=freeze,
|
||||
)
|
||||
except Exception as exc:
|
||||
self.error.emit(str(exc))
|
||||
return
|
||||
|
||||
stage_history.append(
|
||||
{
|
||||
"label": stage_label,
|
||||
"params": stage_params,
|
||||
"weights_used": weights_path,
|
||||
"results": stage_result,
|
||||
}
|
||||
)
|
||||
self.finished.emit(results)
|
||||
except Exception as exc:
|
||||
self.error.emit(str(exc))
|
||||
last_stage_results = stage_result
|
||||
completed_epochs += stage_epochs
|
||||
|
||||
final_payload: Dict[str, Any]
|
||||
if last_stage_results:
|
||||
final_payload = dict(last_stage_results)
|
||||
else:
|
||||
final_payload = {
|
||||
"success": False,
|
||||
"message": "Training stopped before any stage completed.",
|
||||
}
|
||||
|
||||
final_payload["stage_results"] = stage_history
|
||||
final_payload["total_epochs_completed"] = completed_epochs
|
||||
final_payload["total_epochs_planned"] = self.total_epochs
|
||||
final_payload["stages_completed"] = len(stage_history)
|
||||
|
||||
self.finished.emit(final_payload)
|
||||
|
||||
|
||||
class TrainingTab(QWidget):
|
||||
@@ -146,12 +226,23 @@ class TrainingTab(QWidget):
|
||||
|
||||
def _setup_ui(self):
|
||||
"""Setup user interface."""
|
||||
layout = QVBoxLayout()
|
||||
# Create a container widget for all content
|
||||
container = QWidget()
|
||||
container_layout = QVBoxLayout(container)
|
||||
|
||||
layout.addWidget(self._create_dataset_group())
|
||||
layout.addWidget(self._create_training_controls_group())
|
||||
layout.addStretch()
|
||||
self.setLayout(layout)
|
||||
container_layout.addWidget(self._create_dataset_group())
|
||||
container_layout.addWidget(self._create_training_controls_group())
|
||||
container_layout.addStretch()
|
||||
|
||||
# Create scroll area and set the container as its widget
|
||||
scroll_area = QScrollArea()
|
||||
scroll_area.setWidget(container)
|
||||
scroll_area.setWidgetResizable(True)
|
||||
|
||||
# Set main layout with scroll area
|
||||
main_layout = QVBoxLayout(self)
|
||||
main_layout.setContentsMargins(0, 0, 0, 0)
|
||||
main_layout.addWidget(scroll_area)
|
||||
|
||||
self._discover_datasets()
|
||||
self._load_saved_dataset()
|
||||
@@ -249,13 +340,26 @@ class TrainingTab(QWidget):
|
||||
default_base_model = self.config_manager.get(
|
||||
"models.default_base_model", "yolov8s-seg.pt"
|
||||
)
|
||||
base_model_choices = self.config_manager.get("models.base_model_choices", [])
|
||||
|
||||
self.base_model_combo = QComboBox()
|
||||
self.base_model_combo.addItem("Custom path…", "")
|
||||
for choice in base_model_choices:
|
||||
self.base_model_combo.addItem(choice, choice)
|
||||
self.base_model_combo.currentIndexChanged.connect(
|
||||
self._on_base_model_preset_changed
|
||||
)
|
||||
form_layout.addRow("Base Model Preset:", self.base_model_combo)
|
||||
|
||||
base_model_layout = QHBoxLayout()
|
||||
self.base_model_edit = QLineEdit(default_base_model)
|
||||
self.base_model_edit.editingFinished.connect(self._on_base_model_path_edited)
|
||||
base_model_layout.addWidget(self.base_model_edit)
|
||||
self.base_model_browse_button = QPushButton("Browse…")
|
||||
self.base_model_browse_button.clicked.connect(self._browse_base_model)
|
||||
base_model_layout.addWidget(self.base_model_browse_button)
|
||||
form_layout.addRow("Base Model (.pt):", base_model_layout)
|
||||
self._sync_base_model_preset_selection(default_base_model)
|
||||
|
||||
models_dir = self.config_manager.get("models.models_directory", "data/models")
|
||||
save_dir_layout = QHBoxLayout()
|
||||
@@ -298,6 +402,9 @@ class TrainingTab(QWidget):
|
||||
|
||||
group_layout.addLayout(form_layout)
|
||||
|
||||
self.two_stage_group = self._create_two_stage_group(training_defaults)
|
||||
group_layout.addWidget(self.two_stage_group)
|
||||
|
||||
button_layout = QHBoxLayout()
|
||||
self.start_training_button = QPushButton("Start Training")
|
||||
self.start_training_button.clicked.connect(self._start_training)
|
||||
@@ -322,6 +429,134 @@ class TrainingTab(QWidget):
|
||||
group.setLayout(group_layout)
|
||||
return group
|
||||
|
||||
def _create_two_stage_group(self, training_defaults: Dict[str, Any]) -> QGroupBox:
|
||||
group = QGroupBox("Two-Stage Fine-Tuning")
|
||||
group_layout = QVBoxLayout()
|
||||
|
||||
self.two_stage_checkbox = QCheckBox("Enable staged head-only + full fine-tune")
|
||||
two_stage_defaults = (
|
||||
training_defaults.get("two_stage", {}) if training_defaults else {}
|
||||
)
|
||||
self.two_stage_checkbox.setChecked(
|
||||
bool(two_stage_defaults.get("enabled", False))
|
||||
)
|
||||
self.two_stage_checkbox.toggled.connect(self._on_two_stage_toggled)
|
||||
group_layout.addWidget(self.two_stage_checkbox)
|
||||
|
||||
self.two_stage_controls_widget = QWidget()
|
||||
controls_layout = QVBoxLayout()
|
||||
controls_layout.setContentsMargins(0, 0, 0, 0)
|
||||
controls_layout.setSpacing(8)
|
||||
|
||||
stage1_group = QGroupBox("Stage 1 — Head-only stabilization")
|
||||
stage1_form = QFormLayout()
|
||||
stage1_defaults = two_stage_defaults.get("stage1", {})
|
||||
|
||||
self.stage1_epochs_spin = QSpinBox()
|
||||
self.stage1_epochs_spin.setRange(1, 500)
|
||||
self.stage1_epochs_spin.setValue(int(stage1_defaults.get("epochs", 20)))
|
||||
stage1_form.addRow("Epochs:", self.stage1_epochs_spin)
|
||||
|
||||
self.stage1_lr_spin = QDoubleSpinBox()
|
||||
self.stage1_lr_spin.setDecimals(5)
|
||||
self.stage1_lr_spin.setRange(0.00001, 0.1)
|
||||
self.stage1_lr_spin.setSingleStep(0.0005)
|
||||
self.stage1_lr_spin.setValue(float(stage1_defaults.get("lr0", 0.0005)))
|
||||
stage1_form.addRow("Learning Rate:", self.stage1_lr_spin)
|
||||
|
||||
self.stage1_patience_spin = QSpinBox()
|
||||
self.stage1_patience_spin.setRange(1, 200)
|
||||
self.stage1_patience_spin.setValue(int(stage1_defaults.get("patience", 10)))
|
||||
stage1_form.addRow("Patience:", self.stage1_patience_spin)
|
||||
|
||||
self.stage1_freeze_spin = QSpinBox()
|
||||
self.stage1_freeze_spin.setRange(0, 24)
|
||||
self.stage1_freeze_spin.setValue(int(stage1_defaults.get("freeze", 10)))
|
||||
stage1_form.addRow("Freeze layers:", self.stage1_freeze_spin)
|
||||
|
||||
stage1_group.setLayout(stage1_form)
|
||||
controls_layout.addWidget(stage1_group)
|
||||
|
||||
stage2_group = QGroupBox("Stage 2 — Full fine-tuning")
|
||||
stage2_form = QFormLayout()
|
||||
stage2_defaults = two_stage_defaults.get("stage2", {})
|
||||
|
||||
self.stage2_epochs_spin = QSpinBox()
|
||||
self.stage2_epochs_spin.setRange(1, 2000)
|
||||
self.stage2_epochs_spin.setValue(int(stage2_defaults.get("epochs", 150)))
|
||||
stage2_form.addRow("Epochs:", self.stage2_epochs_spin)
|
||||
|
||||
self.stage2_lr_spin = QDoubleSpinBox()
|
||||
self.stage2_lr_spin.setDecimals(5)
|
||||
self.stage2_lr_spin.setRange(0.00001, 0.1)
|
||||
self.stage2_lr_spin.setSingleStep(0.0005)
|
||||
self.stage2_lr_spin.setValue(float(stage2_defaults.get("lr0", 0.0003)))
|
||||
stage2_form.addRow("Learning Rate:", self.stage2_lr_spin)
|
||||
|
||||
self.stage2_patience_spin = QSpinBox()
|
||||
self.stage2_patience_spin.setRange(1, 200)
|
||||
self.stage2_patience_spin.setValue(int(stage2_defaults.get("patience", 30)))
|
||||
stage2_form.addRow("Patience:", self.stage2_patience_spin)
|
||||
|
||||
stage2_group.setLayout(stage2_form)
|
||||
controls_layout.addWidget(stage2_group)
|
||||
|
||||
helper_label = QLabel(
|
||||
"When enabled, staged hyperparameters override the global epochs/patience/lr."
|
||||
)
|
||||
helper_label.setWordWrap(True)
|
||||
controls_layout.addWidget(helper_label)
|
||||
|
||||
self.two_stage_controls_widget.setLayout(controls_layout)
|
||||
group_layout.addWidget(self.two_stage_controls_widget)
|
||||
|
||||
group.setLayout(group_layout)
|
||||
self._on_two_stage_toggled(self.two_stage_checkbox.isChecked())
|
||||
return group
|
||||
|
||||
def _on_two_stage_toggled(self, checked: bool):
|
||||
self._refresh_two_stage_controls_enabled(checked)
|
||||
|
||||
def _refresh_two_stage_controls_enabled(self, checked: Optional[bool] = None):
|
||||
if not hasattr(self, "two_stage_controls_widget"):
|
||||
return
|
||||
desired_state = checked
|
||||
if desired_state is None:
|
||||
desired_state = self.two_stage_checkbox.isChecked()
|
||||
can_edit = self.two_stage_checkbox.isEnabled()
|
||||
self.two_stage_controls_widget.setEnabled(bool(desired_state and can_edit))
|
||||
|
||||
def _on_base_model_preset_changed(self, index: int):
|
||||
preset_value = self.base_model_combo.itemData(index)
|
||||
if preset_value:
|
||||
self.base_model_edit.setText(str(preset_value))
|
||||
elif index == 0:
|
||||
self.base_model_edit.setFocus()
|
||||
|
||||
def _on_base_model_path_edited(self):
|
||||
self._sync_base_model_preset_selection(self.base_model_edit.text().strip())
|
||||
|
||||
def _sync_base_model_preset_selection(self, model_path: str):
|
||||
if not hasattr(self, "base_model_combo"):
|
||||
return
|
||||
normalized = (model_path or "").strip()
|
||||
target_index = 0
|
||||
for idx in range(1, self.base_model_combo.count()):
|
||||
preset_value = self.base_model_combo.itemData(idx)
|
||||
if not preset_value:
|
||||
continue
|
||||
if normalized == preset_value:
|
||||
target_index = idx
|
||||
break
|
||||
if normalized.endswith(f"/{preset_value}") or normalized.endswith(
|
||||
f"\\{preset_value}"
|
||||
):
|
||||
target_index = idx
|
||||
break
|
||||
self.base_model_combo.blockSignals(True)
|
||||
self.base_model_combo.setCurrentIndex(target_index)
|
||||
self.base_model_combo.blockSignals(False)
|
||||
|
||||
def _get_dataset_search_roots(self) -> List[Path]:
|
||||
roots: List[Path] = []
|
||||
default_root = Path("data/datasets").expanduser()
|
||||
@@ -346,6 +581,7 @@ class TrainingTab(QWidget):
|
||||
for yaml_path in root.rglob("*.yaml"):
|
||||
if yaml_path.name.lower() not in {"data.yaml", "dataset.yaml"}:
|
||||
continue
|
||||
|
||||
discovered.append(yaml_path.resolve())
|
||||
except Exception as exc:
|
||||
logger.warning(f"Unable to scan {root}: {exc}")
|
||||
@@ -964,6 +1200,90 @@ class TrainingTab(QWidget):
|
||||
self._build_rgb_dataset(cache_root, dataset_info)
|
||||
return rgb_yaml
|
||||
|
||||
def _compose_stage_plan(self, params: Dict[str, Any]) -> List[Dict[str, Any]]:
|
||||
two_stage = params.get("two_stage") or {}
|
||||
base_stage = {
|
||||
"label": "Single Stage",
|
||||
"model_path": params["base_model"],
|
||||
"use_previous_best": False,
|
||||
"params": {
|
||||
"epochs": params["epochs"],
|
||||
"batch": params["batch"],
|
||||
"imgsz": params["imgsz"],
|
||||
"patience": params["patience"],
|
||||
"lr0": params["lr0"],
|
||||
"freeze": 0,
|
||||
"name": params["run_name"],
|
||||
},
|
||||
}
|
||||
|
||||
if not two_stage.get("enabled"):
|
||||
return [base_stage]
|
||||
|
||||
stage_plan: List[Dict[str, Any]] = []
|
||||
stage1 = two_stage.get("stage1", {})
|
||||
stage2 = two_stage.get("stage2", {})
|
||||
|
||||
stage_plan.append(
|
||||
{
|
||||
"label": "Stage 1 — Head-only",
|
||||
"model_path": params["base_model"],
|
||||
"use_previous_best": False,
|
||||
"params": {
|
||||
"epochs": stage1.get("epochs", params["epochs"]),
|
||||
"batch": params["batch"],
|
||||
"imgsz": params["imgsz"],
|
||||
"patience": stage1.get("patience", params["patience"]),
|
||||
"lr0": stage1.get("lr0", params["lr0"]),
|
||||
"freeze": stage1.get("freeze", 0),
|
||||
"name": f"{params['run_name']}_head_ft",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
stage_plan.append(
|
||||
{
|
||||
"label": "Stage 2 — Full",
|
||||
"model_path": params["base_model"],
|
||||
"use_previous_best": True,
|
||||
"params": {
|
||||
"epochs": stage2.get("epochs", params["epochs"]),
|
||||
"batch": params["batch"],
|
||||
"imgsz": params["imgsz"],
|
||||
"patience": stage2.get("patience", params["patience"]),
|
||||
"lr0": stage2.get("lr0", params["lr0"]),
|
||||
"freeze": stage2.get("freeze", 0),
|
||||
"name": f"{params['run_name']}_full_ft",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
return stage_plan
|
||||
|
||||
def _calculate_total_stage_epochs(self, stage_plan: List[Dict[str, Any]]) -> int:
|
||||
total = 0
|
||||
for stage in stage_plan:
|
||||
params = stage.get("params") or {}
|
||||
try:
|
||||
stage_epochs = int(params.get("epochs", 0))
|
||||
except (TypeError, ValueError):
|
||||
stage_epochs = 0
|
||||
if stage_epochs > 0:
|
||||
total += stage_epochs
|
||||
return total
|
||||
|
||||
def _log_stage_plan(self, stage_plan: List[Dict[str, Any]]):
|
||||
for index, stage in enumerate(stage_plan, start=1):
|
||||
stage_label = stage.get("label") or f"Stage {index}"
|
||||
params = stage.get("params") or {}
|
||||
epochs = params.get("epochs", "?")
|
||||
lr0 = params.get("lr0", "?")
|
||||
patience = params.get("patience", "?")
|
||||
freeze = params.get("freeze", 0)
|
||||
self._append_training_log(
|
||||
f" • {stage_label}: epochs={epochs}, lr0={lr0}, patience={patience}, freeze={freeze}"
|
||||
)
|
||||
|
||||
def _get_rgb_cache_root(self, dataset_yaml: Path) -> Path:
|
||||
cache_base = Path("data/datasets/_rgb_cache")
|
||||
cache_base.mkdir(parents=True, exist_ok=True)
|
||||
@@ -984,8 +1304,8 @@ class TrainingTab(QWidget):
|
||||
if not sample_image:
|
||||
return False
|
||||
try:
|
||||
with PILImage.open(sample_image) as img:
|
||||
return img.mode.upper() != "RGB"
|
||||
img = Image(sample_image)
|
||||
return img.pil_image.mode.upper() != "RGB"
|
||||
except Exception as exc:
|
||||
logger.warning(f"Failed to inspect image {sample_image}: {exc}")
|
||||
return False
|
||||
@@ -1045,9 +1365,13 @@ class TrainingTab(QWidget):
|
||||
dst = dst_dir / relative
|
||||
dst.parent.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
with PILImage.open(src) as img:
|
||||
rgb_img = img.convert("RGB")
|
||||
rgb_img.save(dst)
|
||||
img_obj = Image(src)
|
||||
pil_img = img_obj.pil_image
|
||||
if len(pil_img.getbands()) == 1:
|
||||
rgb_img = img_obj.convert_grayscale_to_rgb_preserve_range()
|
||||
else:
|
||||
rgb_img = pil_img.convert("RGB")
|
||||
rgb_img.save(dst)
|
||||
except Exception as exc:
|
||||
logger.warning(f"Failed to convert {src} to RGB: {exc}")
|
||||
|
||||
@@ -1085,6 +1409,21 @@ class TrainingTab(QWidget):
|
||||
save_dir_path.mkdir(parents=True, exist_ok=True)
|
||||
run_name = f"{model_name}_{model_version}".replace(" ", "_")
|
||||
|
||||
two_stage_config = {
|
||||
"enabled": self.two_stage_checkbox.isChecked(),
|
||||
"stage1": {
|
||||
"epochs": self.stage1_epochs_spin.value(),
|
||||
"lr0": self.stage1_lr_spin.value(),
|
||||
"patience": self.stage1_patience_spin.value(),
|
||||
"freeze": self.stage1_freeze_spin.value(),
|
||||
},
|
||||
"stage2": {
|
||||
"epochs": self.stage2_epochs_spin.value(),
|
||||
"lr0": self.stage2_lr_spin.value(),
|
||||
"patience": self.stage2_patience_spin.value(),
|
||||
},
|
||||
}
|
||||
|
||||
return {
|
||||
"model_name": model_name,
|
||||
"model_version": model_version,
|
||||
@@ -1096,6 +1435,7 @@ class TrainingTab(QWidget):
|
||||
"imgsz": self.imgsz_spin.value(),
|
||||
"patience": self.patience_spin.value(),
|
||||
"lr0": self.lr_spin.value(),
|
||||
"two_stage": two_stage_config,
|
||||
}
|
||||
|
||||
def _start_training(self):
|
||||
@@ -1137,15 +1477,25 @@ class TrainingTab(QWidget):
|
||||
)
|
||||
|
||||
params = self._collect_training_params()
|
||||
stage_plan = self._compose_stage_plan(params)
|
||||
params["stage_plan"] = stage_plan
|
||||
total_planned_epochs = (
|
||||
self._calculate_total_stage_epochs(stage_plan) or params["epochs"]
|
||||
)
|
||||
params["total_planned_epochs"] = total_planned_epochs
|
||||
self._active_training_params = params
|
||||
self._training_cancelled = False
|
||||
|
||||
if len(stage_plan) > 1:
|
||||
self._append_training_log("Two-stage fine-tuning schedule:")
|
||||
self._log_stage_plan(stage_plan)
|
||||
|
||||
self._append_training_log(
|
||||
f"Starting training run '{params['run_name']}' using {params['base_model']}"
|
||||
)
|
||||
|
||||
self.training_progress_bar.setVisible(True)
|
||||
self.training_progress_bar.setMaximum(params["epochs"])
|
||||
self.training_progress_bar.setMaximum(max(1, total_planned_epochs))
|
||||
self.training_progress_bar.setValue(0)
|
||||
self._set_training_state(True)
|
||||
|
||||
@@ -1159,6 +1509,8 @@ class TrainingTab(QWidget):
|
||||
lr0=params["lr0"],
|
||||
save_dir=params["save_dir"],
|
||||
run_name=params["run_name"],
|
||||
stage_plan=stage_plan,
|
||||
total_epochs=total_planned_epochs,
|
||||
)
|
||||
self.training_worker.progress.connect(self._on_training_progress)
|
||||
self.training_worker.finished.connect(self._on_training_finished)
|
||||
@@ -1283,14 +1635,22 @@ class TrainingTab(QWidget):
|
||||
if not model_path:
|
||||
raise ValueError("Training results did not include a model path.")
|
||||
|
||||
effective_epochs = params.get("total_planned_epochs", params["epochs"])
|
||||
training_params = {
|
||||
"epochs": params["epochs"],
|
||||
"epochs": effective_epochs,
|
||||
"batch": params["batch"],
|
||||
"imgsz": params["imgsz"],
|
||||
"patience": params["patience"],
|
||||
"lr0": params["lr0"],
|
||||
"run_name": params["run_name"],
|
||||
"two_stage": params.get("two_stage"),
|
||||
}
|
||||
if params.get("stage_plan"):
|
||||
training_params["stage_plan"] = params["stage_plan"]
|
||||
if results.get("stage_results"):
|
||||
training_params["stage_results"] = results["stage_results"]
|
||||
if results.get("total_epochs_completed") is not None:
|
||||
training_params["epochs_completed"] = results["total_epochs_completed"]
|
||||
|
||||
model_id = self.db_manager.add_model(
|
||||
model_name=params["model_name"],
|
||||
@@ -1315,6 +1675,7 @@ class TrainingTab(QWidget):
|
||||
self.rescan_button.setEnabled(not is_training)
|
||||
self.model_name_edit.setEnabled(not is_training)
|
||||
self.model_version_edit.setEnabled(not is_training)
|
||||
self.base_model_combo.setEnabled(not is_training)
|
||||
self.base_model_edit.setEnabled(not is_training)
|
||||
self.base_model_browse_button.setEnabled(not is_training)
|
||||
self.save_dir_edit.setEnabled(not is_training)
|
||||
@@ -1324,6 +1685,8 @@ class TrainingTab(QWidget):
|
||||
self.imgsz_spin.setEnabled(not is_training)
|
||||
self.patience_spin.setEnabled(not is_training)
|
||||
self.lr_spin.setEnabled(not is_training)
|
||||
self.two_stage_checkbox.setEnabled(not is_training)
|
||||
self._refresh_two_stage_controls_enabled()
|
||||
|
||||
def _append_training_log(self, message: str):
|
||||
timestamp = datetime.now().strftime("%H:%M:%S")
|
||||
@@ -1339,6 +1702,7 @@ class TrainingTab(QWidget):
|
||||
)
|
||||
if file_path:
|
||||
self.base_model_edit.setText(file_path)
|
||||
self._sync_base_model_preset_selection(file_path)
|
||||
|
||||
def _browse_save_dir(self):
|
||||
start_path = self.save_dir_edit.text().strip() or "data/models"
|
||||
|
||||
@@ -16,8 +16,9 @@ from PySide6.QtGui import (
|
||||
QKeyEvent,
|
||||
QMouseEvent,
|
||||
QPaintEvent,
|
||||
QPolygonF,
|
||||
)
|
||||
from PySide6.QtCore import Qt, QEvent, Signal, QPoint
|
||||
from PySide6.QtCore import Qt, QEvent, Signal, QPoint, QPointF, QRect
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from src.utils.image import Image, ImageLoadError
|
||||
@@ -246,10 +247,10 @@ class AnnotationCanvasWidget(QWidget):
|
||||
return
|
||||
|
||||
try:
|
||||
# Get RGB image data
|
||||
if self.current_image.channels == 3:
|
||||
# Get image data in a format compatible with Qt
|
||||
if self.current_image.channels in (3, 4):
|
||||
image_data = self.current_image.get_rgb()
|
||||
height, width, channels = image_data.shape
|
||||
height, width = image_data.shape[:2]
|
||||
else:
|
||||
image_data = self.current_image.get_grayscale()
|
||||
height, width = image_data.shape
|
||||
@@ -263,7 +264,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
height,
|
||||
bytes_per_line,
|
||||
self.current_image.qtimage_format,
|
||||
)
|
||||
).copy() # Copy so Qt owns the buffer even after numpy array goes out of scope
|
||||
|
||||
self.original_pixmap = QPixmap.fromImage(qimage)
|
||||
|
||||
@@ -496,8 +497,10 @@ class AnnotationCanvasWidget(QWidget):
|
||||
)
|
||||
|
||||
painter.setPen(pen)
|
||||
for (x1, y1), (x2, y2) in zip(polyline[:-1], polyline[1:]):
|
||||
painter.drawLine(int(x1), int(y1), int(x2), int(y2))
|
||||
# Use QPolygonF for efficient polygon rendering (single call vs N-1 calls)
|
||||
# drawPolygon() automatically closes the shape, ensuring proper visual closure
|
||||
polygon = QPolygonF([QPointF(x, y) for x, y in polyline])
|
||||
painter.drawPolygon(polygon)
|
||||
|
||||
# Draw bounding boxes (dashed) if enabled
|
||||
if self.show_bboxes and self.original_pixmap is not None and self.bboxes:
|
||||
@@ -529,6 +532,40 @@ class AnnotationCanvasWidget(QWidget):
|
||||
painter.setPen(pen)
|
||||
painter.drawRect(x_min, y_min, rect_width, rect_height)
|
||||
|
||||
label_text = meta.get("label")
|
||||
if label_text:
|
||||
painter.save()
|
||||
font = painter.font()
|
||||
font.setPointSizeF(max(10.0, width + 4))
|
||||
painter.setFont(font)
|
||||
metrics = painter.fontMetrics()
|
||||
text_width = metrics.horizontalAdvance(label_text)
|
||||
text_height = metrics.height()
|
||||
padding = 4
|
||||
bg_width = text_width + padding * 2
|
||||
bg_height = text_height + padding * 2
|
||||
canvas_width = self.original_pixmap.width()
|
||||
canvas_height = self.original_pixmap.height()
|
||||
bg_x = max(0, min(x_min, canvas_width - bg_width))
|
||||
bg_y = y_min - bg_height
|
||||
if bg_y < 0:
|
||||
bg_y = min(y_min, canvas_height - bg_height)
|
||||
bg_y = max(0, bg_y)
|
||||
background_rect = QRect(bg_x, bg_y, bg_width, bg_height)
|
||||
background_color = QColor(pen_color)
|
||||
background_color.setAlpha(220)
|
||||
painter.fillRect(background_rect, background_color)
|
||||
text_color = QColor(0, 0, 0)
|
||||
if background_color.lightness() < 128:
|
||||
text_color = QColor(255, 255, 255)
|
||||
painter.setPen(text_color)
|
||||
painter.drawText(
|
||||
background_rect.adjusted(padding, padding, -padding, -padding),
|
||||
Qt.AlignLeft | Qt.AlignVCenter,
|
||||
label_text,
|
||||
)
|
||||
painter.restore()
|
||||
|
||||
painter.end()
|
||||
|
||||
self._update_display()
|
||||
@@ -787,7 +824,13 @@ class AnnotationCanvasWidget(QWidget):
|
||||
f"Drew saved polyline with {len(polyline)} points in color {color}"
|
||||
)
|
||||
|
||||
def draw_saved_bbox(self, bbox: List[float], color: str, width: int = 3):
|
||||
def draw_saved_bbox(
|
||||
self,
|
||||
bbox: List[float],
|
||||
color: str,
|
||||
width: int = 3,
|
||||
label: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Draw a bounding box from database coordinates onto the annotation canvas.
|
||||
|
||||
@@ -796,6 +839,7 @@ class AnnotationCanvasWidget(QWidget):
|
||||
in normalized coordinates (0-1)
|
||||
color: Color hex string (e.g., '#FF0000')
|
||||
width: Line width in pixels
|
||||
label: Optional text label to render near the bounding box
|
||||
"""
|
||||
if not self.annotation_pixmap or not self.original_pixmap:
|
||||
logger.warning("Cannot draw bounding box: no image loaded")
|
||||
@@ -828,11 +872,11 @@ class AnnotationCanvasWidget(QWidget):
|
||||
self.bboxes.append(
|
||||
[float(x_min_norm), float(y_min_norm), float(x_max_norm), float(y_max_norm)]
|
||||
)
|
||||
self.bbox_meta.append({"color": pen_color, "width": int(width)})
|
||||
self.bbox_meta.append({"color": pen_color, "width": int(width), "label": label})
|
||||
|
||||
# Store in all_strokes for consistency
|
||||
self.all_strokes.append(
|
||||
{"bbox": bbox, "color": color, "alpha": 128, "width": width}
|
||||
{"bbox": bbox, "color": color, "alpha": 128, "width": width, "label": label}
|
||||
)
|
||||
|
||||
# Redraw overlay (polylines + all bounding boxes)
|
||||
|
||||
@@ -137,7 +137,7 @@ class ImageDisplayWidget(QWidget):
|
||||
height,
|
||||
bytes_per_line,
|
||||
self.current_image.qtimage_format,
|
||||
)
|
||||
).copy() # Copy to ensure Qt owns its memory after this scope
|
||||
|
||||
# Convert to pixmap
|
||||
pixmap = QPixmap.fromImage(qimage)
|
||||
|
||||
@@ -5,12 +5,12 @@ Handles detection inference and result storage.
|
||||
|
||||
from typing import List, Dict, Optional, Callable
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from src.model.yolo_wrapper import YOLOWrapper
|
||||
from src.database.db_manager import DatabaseManager
|
||||
from src.utils.image import Image
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.file_utils import get_relative_path
|
||||
|
||||
@@ -42,6 +42,7 @@ class InferenceEngine:
|
||||
relative_path: str,
|
||||
conf: float = 0.25,
|
||||
save_to_db: bool = True,
|
||||
repository_root: Optional[str] = None,
|
||||
) -> Dict:
|
||||
"""
|
||||
Detect objects in a single image.
|
||||
@@ -51,49 +52,79 @@ class InferenceEngine:
|
||||
relative_path: Relative path from repository root
|
||||
conf: Confidence threshold
|
||||
save_to_db: Whether to save results to database
|
||||
repository_root: Base directory used to compute relative_path (if known)
|
||||
|
||||
Returns:
|
||||
Dictionary with detection results
|
||||
"""
|
||||
try:
|
||||
# Normalize storage path (fall back to absolute path when repo root is unknown)
|
||||
stored_relative_path = relative_path
|
||||
if not repository_root:
|
||||
stored_relative_path = str(Path(image_path).resolve())
|
||||
|
||||
# Get image dimensions
|
||||
img = Image.open(image_path)
|
||||
width, height = img.size
|
||||
img.close()
|
||||
img = Image(image_path)
|
||||
width = img.width
|
||||
height = img.height
|
||||
|
||||
# Perform detection
|
||||
detections = self.yolo.predict(image_path, conf=conf)
|
||||
|
||||
# Add/get image in database
|
||||
image_id = self.db_manager.get_or_create_image(
|
||||
relative_path=relative_path,
|
||||
relative_path=stored_relative_path,
|
||||
filename=Path(image_path).name,
|
||||
width=width,
|
||||
height=height,
|
||||
)
|
||||
|
||||
# Save detections to database
|
||||
if save_to_db and detections:
|
||||
detection_records = []
|
||||
for det in detections:
|
||||
# Use normalized bbox from detection
|
||||
bbox_normalized = det[
|
||||
"bbox_normalized"
|
||||
] # [x_min, y_min, x_max, y_max]
|
||||
inserted_count = 0
|
||||
deleted_count = 0
|
||||
|
||||
record = {
|
||||
"image_id": image_id,
|
||||
"model_id": self.model_id,
|
||||
"class_name": det["class_name"],
|
||||
"bbox": tuple(bbox_normalized),
|
||||
"confidence": det["confidence"],
|
||||
"segmentation_mask": det.get("segmentation_mask"),
|
||||
"metadata": {"class_id": det["class_id"]},
|
||||
}
|
||||
detection_records.append(record)
|
||||
# Save detections to database, replacing any previous results for this image/model
|
||||
if save_to_db:
|
||||
deleted_count = self.db_manager.delete_detections_for_image(
|
||||
image_id, self.model_id
|
||||
)
|
||||
if detections:
|
||||
detection_records = []
|
||||
for det in detections:
|
||||
# Use normalized bbox from detection
|
||||
bbox_normalized = det[
|
||||
"bbox_normalized"
|
||||
] # [x_min, y_min, x_max, y_max]
|
||||
|
||||
self.db_manager.add_detections_batch(detection_records)
|
||||
logger.info(f"Saved {len(detection_records)} detections to database")
|
||||
metadata = {
|
||||
"class_id": det["class_id"],
|
||||
"source_path": str(Path(image_path).resolve()),
|
||||
}
|
||||
if repository_root:
|
||||
metadata["repository_root"] = str(
|
||||
Path(repository_root).resolve()
|
||||
)
|
||||
|
||||
record = {
|
||||
"image_id": image_id,
|
||||
"model_id": self.model_id,
|
||||
"class_name": det["class_name"],
|
||||
"bbox": tuple(bbox_normalized),
|
||||
"confidence": det["confidence"],
|
||||
"segmentation_mask": det.get("segmentation_mask"),
|
||||
"metadata": metadata,
|
||||
}
|
||||
detection_records.append(record)
|
||||
|
||||
inserted_count = self.db_manager.add_detections_batch(
|
||||
detection_records
|
||||
)
|
||||
logger.info(
|
||||
f"Saved {inserted_count} detections to database (replaced {deleted_count})"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"Detection run removed {deleted_count} stale entries but produced no new detections"
|
||||
)
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
@@ -142,7 +173,12 @@ class InferenceEngine:
|
||||
rel_path = get_relative_path(image_path, repository_root)
|
||||
|
||||
# Perform detection
|
||||
result = self.detect_single(image_path, rel_path, conf)
|
||||
result = self.detect_single(
|
||||
image_path,
|
||||
rel_path,
|
||||
conf=conf,
|
||||
repository_root=repository_root,
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
# Update progress
|
||||
|
||||
@@ -7,6 +7,9 @@ from ultralytics import YOLO
|
||||
from pathlib import Path
|
||||
from typing import Optional, List, Dict, Callable, Any
|
||||
import torch
|
||||
import tempfile
|
||||
import os
|
||||
from src.utils.image import Image
|
||||
from src.utils.logger import get_logger
|
||||
|
||||
|
||||
@@ -77,7 +80,8 @@ class YOLOWrapper:
|
||||
Dictionary with training results
|
||||
"""
|
||||
if self.model is None:
|
||||
self.load_model()
|
||||
if not self.load_model():
|
||||
raise RuntimeError(f"Failed to load model from {self.model_path}")
|
||||
|
||||
try:
|
||||
logger.info(f"Starting training: {name}")
|
||||
@@ -119,7 +123,8 @@ class YOLOWrapper:
|
||||
Dictionary with validation metrics
|
||||
"""
|
||||
if self.model is None:
|
||||
self.load_model()
|
||||
if not self.load_model():
|
||||
raise RuntimeError(f"Failed to load model from {self.model_path}")
|
||||
|
||||
try:
|
||||
logger.info(f"Starting validation on {split} split")
|
||||
@@ -160,12 +165,15 @@ class YOLOWrapper:
|
||||
List of detection dictionaries
|
||||
"""
|
||||
if self.model is None:
|
||||
self.load_model()
|
||||
if not self.load_model():
|
||||
raise RuntimeError(f"Failed to load model from {self.model_path}")
|
||||
|
||||
prepared_source, cleanup_path = self._prepare_source(source)
|
||||
|
||||
try:
|
||||
logger.info(f"Running inference on {source}")
|
||||
results = self.model.predict(
|
||||
source=source,
|
||||
source=prepared_source,
|
||||
conf=conf,
|
||||
iou=iou,
|
||||
save=save,
|
||||
@@ -182,6 +190,14 @@ class YOLOWrapper:
|
||||
except Exception as e:
|
||||
logger.error(f"Error during inference: {e}")
|
||||
raise
|
||||
finally:
|
||||
if 0: # cleanup_path:
|
||||
try:
|
||||
os.remove(cleanup_path)
|
||||
except OSError as cleanup_error:
|
||||
logger.warning(
|
||||
f"Failed to delete temporary RGB image {cleanup_path}: {cleanup_error}"
|
||||
)
|
||||
|
||||
def export(
|
||||
self, format: str = "onnx", output_path: Optional[str] = None, **kwargs
|
||||
@@ -198,7 +214,8 @@ class YOLOWrapper:
|
||||
Path to exported model
|
||||
"""
|
||||
if self.model is None:
|
||||
self.load_model()
|
||||
if not self.load_model():
|
||||
raise RuntimeError(f"Failed to load model from {self.model_path}")
|
||||
|
||||
try:
|
||||
logger.info(f"Exporting model to {format} format")
|
||||
@@ -210,6 +227,38 @@ class YOLOWrapper:
|
||||
logger.error(f"Error exporting model: {e}")
|
||||
raise
|
||||
|
||||
def _prepare_source(self, source):
|
||||
"""Convert single-channel images to RGB temporarily for inference."""
|
||||
cleanup_path = None
|
||||
|
||||
if isinstance(source, (str, Path)):
|
||||
source_path = Path(source)
|
||||
if source_path.is_file():
|
||||
try:
|
||||
img_obj = Image(source_path)
|
||||
pil_img = img_obj.pil_image
|
||||
if len(pil_img.getbands()) == 1:
|
||||
rgb_img = img_obj.convert_grayscale_to_rgb_preserve_range()
|
||||
else:
|
||||
rgb_img = pil_img.convert("RGB")
|
||||
|
||||
suffix = source_path.suffix or ".png"
|
||||
tmp = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
|
||||
tmp_path = tmp.name
|
||||
tmp.close()
|
||||
rgb_img.save(tmp_path)
|
||||
cleanup_path = tmp_path
|
||||
logger.info(
|
||||
f"Converted image {source_path} to RGB for inference at {tmp_path}"
|
||||
)
|
||||
return tmp_path, cleanup_path
|
||||
except Exception as convert_error:
|
||||
logger.warning(
|
||||
f"Failed to preprocess {source_path} as RGB, continuing with original file: {convert_error}"
|
||||
)
|
||||
|
||||
return source, cleanup_path
|
||||
|
||||
def _format_training_results(self, results) -> Dict[str, Any]:
|
||||
"""Format training results into dictionary."""
|
||||
try:
|
||||
|
||||
@@ -7,6 +7,7 @@ import yaml
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
from src.utils.logger import get_logger
|
||||
from src.utils.image import Image
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -46,18 +47,15 @@ class ConfigManager:
|
||||
"database": {"path": "data/detections.db"},
|
||||
"image_repository": {
|
||||
"base_path": "",
|
||||
"allowed_extensions": [
|
||||
".jpg",
|
||||
".jpeg",
|
||||
".png",
|
||||
".tif",
|
||||
".tiff",
|
||||
".bmp",
|
||||
],
|
||||
"allowed_extensions": Image.SUPPORTED_EXTENSIONS,
|
||||
},
|
||||
"models": {
|
||||
"default_base_model": "yolov8s-seg.pt",
|
||||
"models_directory": "data/models",
|
||||
"base_model_choices": [
|
||||
"yolov8s-seg.pt",
|
||||
"yolov11s-seg.pt",
|
||||
],
|
||||
},
|
||||
"training": {
|
||||
"default_epochs": 100,
|
||||
@@ -65,6 +63,20 @@ class ConfigManager:
|
||||
"default_imgsz": 640,
|
||||
"default_patience": 50,
|
||||
"default_lr0": 0.01,
|
||||
"two_stage": {
|
||||
"enabled": False,
|
||||
"stage1": {
|
||||
"epochs": 20,
|
||||
"lr0": 0.0005,
|
||||
"patience": 10,
|
||||
"freeze": 10,
|
||||
},
|
||||
"stage2": {
|
||||
"epochs": 150,
|
||||
"lr0": 0.0003,
|
||||
"patience": 30,
|
||||
},
|
||||
},
|
||||
},
|
||||
"detection": {
|
||||
"default_confidence": 0.25,
|
||||
@@ -214,5 +226,5 @@ class ConfigManager:
|
||||
def get_allowed_extensions(self) -> list:
|
||||
"""Get list of allowed image file extensions."""
|
||||
return self.get(
|
||||
"image_repository.allowed_extensions", [".jpg", ".jpeg", ".png"]
|
||||
"image_repository.allowed_extensions", Image.SUPPORTED_EXTENSIONS
|
||||
)
|
||||
|
||||
@@ -28,7 +28,9 @@ def get_image_files(
|
||||
List of absolute paths to image files
|
||||
"""
|
||||
if allowed_extensions is None:
|
||||
allowed_extensions = [".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp"]
|
||||
from src.utils.image import Image
|
||||
|
||||
allowed_extensions = Image.SUPPORTED_EXTENSIONS
|
||||
|
||||
# Normalize extensions to lowercase
|
||||
allowed_extensions = [ext.lower() for ext in allowed_extensions]
|
||||
@@ -204,7 +206,9 @@ def is_image_file(
|
||||
True if file is an image
|
||||
"""
|
||||
if allowed_extensions is None:
|
||||
allowed_extensions = [".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp"]
|
||||
from src.utils.image import Image
|
||||
|
||||
allowed_extensions = Image.SUPPORTED_EXTENSIONS
|
||||
|
||||
extension = Path(file_path).suffix.lower()
|
||||
return extension in [ext.lower() for ext in allowed_extensions]
|
||||
|
||||
@@ -277,6 +277,38 @@ class Image:
|
||||
"""
|
||||
return self._channels >= 3
|
||||
|
||||
def convert_grayscale_to_rgb_preserve_range(
|
||||
self,
|
||||
) -> PILImage.Image:
|
||||
"""Convert a single-channel PIL image to RGB while preserving dynamic range.
|
||||
|
||||
Returns:
|
||||
PIL Image in RGB mode with intensities normalized to 0-255.
|
||||
"""
|
||||
if self._channels == 3:
|
||||
return self.pil_image
|
||||
|
||||
grayscale = self.data
|
||||
if grayscale.ndim == 3:
|
||||
grayscale = grayscale[:, :, 0]
|
||||
|
||||
original_dtype = grayscale.dtype
|
||||
grayscale = grayscale.astype(np.float32)
|
||||
|
||||
if grayscale.size == 0:
|
||||
return PILImage.new("RGB", self.shape, color=(0, 0, 0))
|
||||
|
||||
if np.issubdtype(original_dtype, np.integer):
|
||||
denom = float(max(np.iinfo(original_dtype).max, 1))
|
||||
else:
|
||||
max_val = float(grayscale.max())
|
||||
denom = max(max_val, 1.0)
|
||||
|
||||
grayscale = np.clip(grayscale / denom, 0.0, 1.0)
|
||||
grayscale_u8 = (grayscale * 255.0).round().astype(np.uint8)
|
||||
rgb_arr = np.repeat(grayscale_u8[:, :, None], 3, axis=2)
|
||||
return PILImage.fromarray(rgb_arr, mode="RGB")
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the Image object."""
|
||||
return (
|
||||
|
||||
160
src/utils/image_converters.py
Normal file
160
src/utils/image_converters.py
Normal file
@@ -0,0 +1,160 @@
|
||||
import numpy as np
|
||||
|
||||
from roifile import ImagejRoi
|
||||
from tifffile import TiffFile, TiffWriter
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class UT:
|
||||
"""
|
||||
Docstring for UT
|
||||
|
||||
Operetta files along with rois drawn in ImageJ
|
||||
"""
|
||||
|
||||
def __init__(self, roifile_fn: Path, no_labels: bool):
|
||||
self.roifile_fn = roifile_fn
|
||||
print("is file", self.roifile_fn.is_file())
|
||||
self.rois = None
|
||||
if no_labels:
|
||||
self.rois = ImagejRoi.fromfile(self.roifile_fn)
|
||||
self.stem = self.roifile_fn.stem.split("Roi-")[1]
|
||||
else:
|
||||
self.roifile_fn = roifile_fn / roifile_fn.parts[-1]
|
||||
self.stem = self.roifile_fn.stem
|
||||
|
||||
print(self.roifile_fn)
|
||||
|
||||
print(self.stem)
|
||||
self.image, self.image_props = self._load_images()
|
||||
|
||||
def _load_images(self):
|
||||
"""Loading sequence of tif files
|
||||
array sequence is CZYX
|
||||
"""
|
||||
print("Loading images:", self.roifile_fn.parent, self.stem)
|
||||
fns = list(self.roifile_fn.parent.glob(f"{self.stem.lower()}*.tif*"))
|
||||
stems = [fn.stem.split(self.stem)[-1] for fn in fns]
|
||||
n_ch = len(set([stem.split("-ch")[-1].split("t")[0] for stem in stems]))
|
||||
n_p = len(set([stem.split("-")[0] for stem in stems]))
|
||||
n_t = len(set([stem.split("t")[1] for stem in stems]))
|
||||
|
||||
with TiffFile(fns[0]) as tif:
|
||||
img = tif.asarray()
|
||||
w, h = img.shape
|
||||
dtype = img.dtype
|
||||
self.image_props = {
|
||||
"channels": n_ch,
|
||||
"planes": n_p,
|
||||
"tiles": n_t,
|
||||
"width": w,
|
||||
"height": h,
|
||||
"dtype": dtype,
|
||||
}
|
||||
print("Image props", self.image_props)
|
||||
|
||||
image_stack = np.zeros((n_ch, n_p, w, h), dtype=dtype)
|
||||
for fn in fns:
|
||||
with TiffFile(fn) as tif:
|
||||
img = tif.asarray()
|
||||
stem = fn.stem.split(self.stem)[-1]
|
||||
ch = int(stem.split("-ch")[-1].split("t")[0])
|
||||
p = int(stem.split("-")[0].split("p")[1])
|
||||
t = int(stem.split("t")[1])
|
||||
print(fn.stem, "ch", ch, "p", p, "t", t)
|
||||
image_stack[ch - 1, p - 1] = img
|
||||
|
||||
print(image_stack.shape)
|
||||
|
||||
return image_stack, self.image_props
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return self.image_props["width"]
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return self.image_props["height"]
|
||||
|
||||
@property
|
||||
def nchannels(self):
|
||||
return self.image_props["channels"]
|
||||
|
||||
@property
|
||||
def nplanes(self):
|
||||
return self.image_props["planes"]
|
||||
|
||||
def export_rois(
|
||||
self,
|
||||
path: Path,
|
||||
subfolder: str = "labels",
|
||||
class_index: int = 0,
|
||||
):
|
||||
"""Export rois to a file"""
|
||||
with open(path / subfolder / f"{self.stem}.txt", "w") as f:
|
||||
for i, roi in enumerate(self.rois):
|
||||
rc = roi.subpixel_coordinates
|
||||
if rc is None:
|
||||
print(
|
||||
f"No coordinates: {self.roifile_fn}, element {i}, out of {len(self.rois)}"
|
||||
)
|
||||
continue
|
||||
xmn, ymn = rc.min(axis=0)
|
||||
xmx, ymx = rc.max(axis=0)
|
||||
xc = (xmn + xmx) / 2
|
||||
yc = (ymn + ymx) / 2
|
||||
bw = xmx - xmn
|
||||
bh = ymx - ymn
|
||||
coords = f"{xc/self.width} {yc/self.height} {bw/self.width} {bh/self.height} "
|
||||
for x, y in rc:
|
||||
coords += f"{x/self.width} {y/self.height} "
|
||||
f.write(f"{class_index} {coords}\n")
|
||||
|
||||
return
|
||||
|
||||
def export_image(
|
||||
self,
|
||||
path: Path,
|
||||
subfolder: str = "images",
|
||||
plane_mode: str = "max projection",
|
||||
channel: int = 0,
|
||||
):
|
||||
"""Export image to a file"""
|
||||
|
||||
if plane_mode == "max projection":
|
||||
self.image = np.max(self.image[channel], axis=0)
|
||||
print(self.image.shape)
|
||||
|
||||
print(path / subfolder / f"{self.stem}.tif")
|
||||
with TiffWriter(path / subfolder / f"{self.stem}.tif") as tif:
|
||||
tif.write(self.image)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--input", nargs="*", type=Path)
|
||||
parser.add_argument("-o", "--output", type=Path)
|
||||
parser.add_argument(
|
||||
"--no-labels",
|
||||
action="store_false",
|
||||
help="Source does not have labels, export only images",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
for path in args.input:
|
||||
print("Path:", path)
|
||||
if not args.no_labels:
|
||||
print("No labels")
|
||||
ut = UT(path, args.no_labels)
|
||||
ut.export_image(args.output, plane_mode="max projection", channel=0)
|
||||
|
||||
else:
|
||||
for rfn in Path(path).glob("*.zip"):
|
||||
print("Roi FN:", rfn)
|
||||
ut = UT(rfn, args.no_labels)
|
||||
ut.export_rois(args.output, class_index=0)
|
||||
ut.export_image(args.output, plane_mode="max projection", channel=0)
|
||||
|
||||
print()
|
||||
184
tests/show_yolo_seg.py
Normal file
184
tests/show_yolo_seg.py
Normal file
@@ -0,0 +1,184 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
show_yolo_seg.py
|
||||
|
||||
Usage:
|
||||
python show_yolo_seg.py /path/to/image.jpg /path/to/labels.txt
|
||||
|
||||
Supports:
|
||||
- Segmentation polygons: "class x1 y1 x2 y2 ... xn yn"
|
||||
- YOLO bbox lines as fallback: "class x_center y_center width height"
|
||||
Coordinates can be normalized [0..1] or absolute pixels (auto-detected).
|
||||
"""
|
||||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
|
||||
def parse_label_line(line):
|
||||
parts = line.strip().split()
|
||||
if not parts:
|
||||
return None
|
||||
cls = int(float(parts[0]))
|
||||
coords = [float(x) for x in parts[1:]]
|
||||
return cls, coords
|
||||
|
||||
|
||||
def coords_are_normalized(coords):
|
||||
# If every coordinate is between 0 and 1 (inclusive-ish), assume normalized
|
||||
if not coords:
|
||||
return False
|
||||
return max(coords) <= 1.001
|
||||
|
||||
|
||||
def yolo_bbox_to_xyxy(coords, img_w, img_h):
|
||||
# coords: [xc, yc, w, h] normalized or absolute
|
||||
xc, yc, w, h = coords[:4]
|
||||
if max(coords) <= 1.001:
|
||||
xc *= img_w
|
||||
yc *= img_h
|
||||
w *= img_w
|
||||
h *= img_h
|
||||
x1 = int(round(xc - w / 2))
|
||||
y1 = int(round(yc - h / 2))
|
||||
x2 = int(round(xc + w / 2))
|
||||
y2 = int(round(yc + h / 2))
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def poly_to_pts(coords, img_w, img_h):
|
||||
# coords: [x1 y1 x2 y2 ...] either normalized or absolute
|
||||
if coords_are_normalized(coords[4:]):
|
||||
coords = [
|
||||
coords[i] * (img_w if i % 2 == 0 else img_h) for i in range(len(coords))
|
||||
]
|
||||
pts = np.array(coords, dtype=np.int32).reshape(-1, 2)
|
||||
return pts
|
||||
|
||||
|
||||
def random_color_for_class(cls):
|
||||
random.seed(cls) # deterministic per class
|
||||
return tuple(int(x) for x in np.array([random.randint(0, 255) for _ in range(3)]))
|
||||
|
||||
|
||||
def draw_annotations(img, labels, alpha=0.4, draw_bbox_for_poly=True):
|
||||
# img: BGR numpy array
|
||||
overlay = img.copy()
|
||||
h, w = img.shape[:2]
|
||||
for cls, coords in labels:
|
||||
if not coords:
|
||||
continue
|
||||
# polygon case (>=6 coordinates)
|
||||
if len(coords) >= 6:
|
||||
color = random_color_for_class(cls)
|
||||
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords[:4], w, h)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
||||
|
||||
pts = poly_to_pts(coords[4:], w, h)
|
||||
# fill on overlay
|
||||
cv2.fillPoly(overlay, [pts], color)
|
||||
# outline on base image
|
||||
cv2.polylines(img, [pts], isClosed=True, color=color, thickness=2)
|
||||
# put class text at first point
|
||||
x, y = int(pts[0, 0]), int(pts[0, 1]) - 6
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x, max(6, y)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
|
||||
# YOLO bbox case (4 coords)
|
||||
elif len(coords) == 4:
|
||||
x1, y1, x2, y2 = yolo_bbox_to_xyxy(coords, w, h)
|
||||
color = random_color_for_class(cls)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
||||
cv2.putText(
|
||||
img,
|
||||
str(cls),
|
||||
(x1, max(6, y1 - 4)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6,
|
||||
(255, 255, 255),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
else:
|
||||
# Unknown / invalid format, skip
|
||||
continue
|
||||
|
||||
# blend overlay for filled polygons
|
||||
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
|
||||
return img
|
||||
|
||||
|
||||
def load_labels_file(label_path):
|
||||
labels = []
|
||||
with open(label_path, "r") as f:
|
||||
for raw in f:
|
||||
line = raw.strip()
|
||||
if not line:
|
||||
continue
|
||||
parsed = parse_label_line(line)
|
||||
if parsed:
|
||||
labels.append(parsed)
|
||||
return labels
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Show YOLO segmentation / polygon annotations"
|
||||
)
|
||||
parser.add_argument("image", type=str, help="Path to image file")
|
||||
parser.add_argument("labels", type=str, help="Path to YOLO label file (polygons)")
|
||||
parser.add_argument(
|
||||
"--alpha", type=float, default=0.4, help="Polygon fill alpha (0..1)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-bbox", action="store_true", help="Don't draw bounding boxes for polygons"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
img_path = Path(args.image)
|
||||
lbl_path = Path(args.labels)
|
||||
|
||||
if not img_path.exists():
|
||||
print("Image not found:", img_path)
|
||||
sys.exit(1)
|
||||
if not lbl_path.exists():
|
||||
print("Label file not found:", lbl_path)
|
||||
sys.exit(1)
|
||||
|
||||
img = cv2.imread(str(img_path), cv2.IMREAD_COLOR)
|
||||
if img is None:
|
||||
print("Could not load image:", img_path)
|
||||
sys.exit(1)
|
||||
|
||||
labels = load_labels_file(str(lbl_path))
|
||||
if not labels:
|
||||
print("No labels parsed from", lbl_path)
|
||||
# continue and just show image
|
||||
out = draw_annotations(
|
||||
img.copy(), labels, alpha=args.alpha, draw_bbox_for_poly=(not args.no_bbox)
|
||||
)
|
||||
|
||||
# Convert BGR -> RGB for matplotlib display
|
||||
out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
||||
plt.figure(figsize=(10, 10 * out.shape[0] / out.shape[1]))
|
||||
plt.imshow(out_rgb)
|
||||
plt.axis("off")
|
||||
plt.title(f"{img_path.name} ({lbl_path.name})")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -27,7 +27,7 @@ class TestImage:
|
||||
|
||||
def test_supported_extensions(self):
|
||||
"""Test that supported extensions are correctly defined."""
|
||||
expected_extensions = [".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp"]
|
||||
expected_extensions = Image.SUPPORTED_EXTENSIONS
|
||||
assert Image.SUPPORTED_EXTENSIONS == expected_extensions
|
||||
|
||||
def test_image_properties(self, tmp_path):
|
||||
|
||||
Reference in New Issue
Block a user